

Airspace Change Organising Group

Scottish Terminal Control Area (ScTMA) Cluster
- Cumulative Analysis Framework Part 2
(CAF2) Report

Issue 2.0 (June 2025)

Contents

1	Executive Summary	4
2	Introduction	7
3	CAF2 Methodology	9
	Analysis Period and Forecasting	9
	Comparison	9
	Combined CO₂e/Fuel Methodology	9
	Methodology for Other Impact Categories	10
	Other Shared Assumptions	10
	Rounding	10
	Safety	10
	Annexes	10
4	Consultation Options	10
5	Interdependencies and Trade Offs	11
6	Cluster-Wide Baseline "Without Airspace Change"	12
	L _{Aeq} for "Without Airspace Change" Baseline - Communities	15
	N60 and N65 contours "Without Airspace Change" Baseline - Communities	19
	Overflight Contours "Without Airspace Change" Baseline - Communities	22
	Local Air Quality for "Without Airspace Change" Baseline - Communities	25
	Greenhouse Gas Emissions for "Without Airspace Change" Baseline – Wider society	25
	Tranquillity for "Without Airspace Change" Baseline – Wider society	26
	Biodiversity Data for "Without Airspace Change" Baseline – Wider Society	29
	Capacity/Resilience for "Without Airspace Change" Baseline - Wider society	32
	Access – General Aviation	32
	Economic Impact from Increased Effective Capacity for "Without Airspace Change" Baseline – General Aviation/Commercial Airlines	
	Fuel burn for "Without Airspace Change" Baseline – General Aviation/Commercial Airlines	
	Training Costs for "Without Airspace Change" Baseline – Commercial Airlines	
	Other Costs for "Without Airspace Change" Baseline – Commercial Airlines	
	Operational Costs for "Without Airspace Change" Baseline – Airport / ANSP	
	Deployment Costs for "Without Airspace Change" Baseline – Airport / ANSP	
	Other Costs for "Without Airspace Change" Baseline – Airport / ANSP	
7	Collective Performance – Cluster-Wide "With Airspace Change"	
	Noise for Cluster-Wide "With Airspace Change" Proposal - Communities	

	L _{Aeq} for Cluster-Wide "With Airspace Change" Proposal - Communities	38
	N60 and N65 contours for Cluster-Wide "With Airspace Change" Proposal - Communities	42
	Overflight Contours for Cluster-Wide "With Airspace Change" Proposal - Communities	44
	Local Air Quality for Cluster-Wide "With Airspace Change" Proposal - Communities	46
	$\label{thm:continuous} Greenhouse\ Gas\ Emissions\ for\ Cluster-Wide\ "With\ Airspace\ Change"\ Proposal-Wider\ society\ .$	46
	Tranquillity for Cluster-Wide "With Airspace Change" Proposal – Wider society	48
	Biodiversity Data for Cluster-Wide "With Airspace Change" Proposal	51
	Capacity/Resilience for Cluster-Wide "With Airspace Change" Proposal - Wider society	53
	Access for Cluster-Wide "With Airspace Change" Proposal – General Aviation	54
	Economic Impact from Increased Effective Capacity for Cluster-Wide "With Airspace Change" Proposal – General Aviation/Commercial Airlines	82
	Fuel Burn for Cluster-Wide "With Airspace Change" Proposal – General Aviation/Commercial Airlines	82
	Training Costs for Cluster-Wide "With Airspace Change" Proposal – Commercial Airlines	83
	Other Costs for Cluster-Wide "With Airspace Change" Proposal – Commercial Airlines	83
	Infrastructure Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP	83
	Operational Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP	83
	Deployment Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP	83
	Other Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP	83
8	Cost Benefits Analysis	84
	Notes for Cost Benefit Analysis:	84
Lis	et of figures and data tables	87

1 Executive Summary

- 1. This document provides information on the cumulative and collective performance of the Airspace Change Proposals (ACPs) in the Scottish Terminal Control Area (ScTMA) cluster (also referred to as the Scottish Airspace Modernisation). This cluster consists of separate ACPs for Glasgow Airport, Edinburgh Airport and NATS En-Route Limited (NERL); these three organisations are collectively referred to as the 'sponsors'). This document has been complied by the Airspace Change Organising Group (ACOG) in line with the Cumulative Analysis Framework method presented in the UK Airspace Change Masterplan (Iteration 3 ScTMA).
- 2. Each sponsor has undertaken a Full Options Appraisal in line with the CAA's CAP1616 requirements for airspace change. The sponsors' Full Options Appraisals provide detail at the local level, whereas this document provides an overview of cumulative and collective performance at a cluster-wide level.
- 3. Each of the three sponsors is presenting one option for consultation. This means there is one clusterwide option for this document to consider comprising of the three component proposals.
- 4. The CAF2 data has been generated by combining information from each sponsor's Full Options Appraisal to show how the combined 'with airspace change' option for the cluster compares to the combined 'without airspace change' baseline. The comparison is undertaken for a 10 year period from 2027 (the implementation year) to 2036. The result is a suite of tables and diagrams to match those presented in the individual ACPs, but which show performance for the whole cluster, rather than for single ACP.
- 5. All the sponsors options are compatible with one another, so there are no interdependencies or tradeoffs between the sponsors consultation options¹.
- There are no cumulative impacts from noise or overflights in the cluster-wide option. Cumulative impacts in this case would relate to the situation where a location is overflown by new flight paths below 7000ft from both the Glasgow Airport and Edinburgh Airport proposed designs. The data shows there are no such cumulative impacts this is demonstrated by the fact that there is no overlap between the noise and overflight contours for each airport's consultation options. Therefore, stakeholders with an interest in the noise or overflight effects from flights below 7000ft in specific areas should consult the relevant local ACP where local impacts are described in more detail.
- 7. The CAF2 collective results for the cluster are summarised below. For details, regarding each ACP please see the separate Full Options Appraisal submissions/consultations.
- 8. **Cost Benefit Analysis:** The cost benefit analysis figures summarised Table 1 show the cluster-wide option would provide an overall Net Present Value (NPV) benefit of c.£130m for the period 2027-2036.

4

ScTMA CAF2, Issue 2.0

-

¹ Interdependencies and trade offs identified during the design phase are captured in the CAF1 sections of the UK Airspace Modernisation Strategy Masterplan (Iteration 3 ScTMA).

Table 1: Cost benefit Analysis Summary for 2027-2036

Tota	al NPV benefit		Noise NPV Benefit	CO ₂	e NPV Benefit	Fuel	l NPV Benefit		Delay NPV benefit	lr	nfrastructure Costs	Ор	erational Cost
£	129,693,984	£	31,566,333	£	53,573,505	£	36,472,681	£	7,866,010	£	244,050	-£	28,594

9. Table 2 shows a summary of key collective statistics from the ScTMA cluster, which provide context for the monetised values in Table 1.

Table 2: CAF2 Summary Results for 2027-2036

Net people experiencing reduced daytime noise (LAeq)	Net people experiencing reduced nighttime noise (LAeq)	Greenhouse Gas Benefit (CO2e kT)	Fuel Benefit (kT)
39,973	53,358	219.8	69.1

- 10. **Noise**: the government identifies a level of noise above which there are potential adverse effects on health and quality of life. These levels are defined in the 'L_{Aeq}' noise metric which is the primary decision-making metric for noise. The population data for the L_{Aeq} metric showed that, in the cluster-wide 'with airspace change' option, some people would experience more noise above the levels defined by government, but in all cases these would be outnumbered by people experiencing less noise. Overall this results in a benefit from reduced noise which has been monetised at c. £32m over the 10 year analysis period (using the governments TAG workbook).
- 11. **Greenhouse Gases (CO2e) and Fuel Burn**: these are both forecast to increase as a result of traffic growth in both the 'without airspace change' baseline and cluster-wide 'with airspace change' option. However, the CO2e/fuel *per flight* is expected to fall, meaning that the rate of increase for overall CO2e would be less as a result of the change. Overall, this results in a benefit from reduced CO2e which is valued at c. £51m over the 10 year analysis period. There is also a benefit from reduced fuel costs of c.£36m over the same period.
- 12. It should be noted that the CO₂e results represent what is referred to as 'enabled benefit' derived from computer modelling which rely on forecasts and assumptions. The modelling used is industry-leading, but the level of accuracy cannot be confirmed until it is assessed at the post implementation stage. Some results may be an overestimation, others may underestimate. However, under all scenarios it is anticipated that the proposed changes will enable a cluster-wide CO₂e benefit on average per flight.
- Capacity: Flight numbers in the region are expected to grow at an equal rate either with or without the cluster wide change. However, the cluster-wide 'with airspace change' option is forecast to result in fewer minutes of delay: 46,746 minutes fewer in 2027, rising to 60,818 minutes fewer in 2036.
- 14. **General Aviation (GA):** Overall, the cluster-wide 'with airspace change' option will require approximately 700 cubic nautical miles (NM³) of additional controlled airspace. However, this is a net figure and relates to over 1300 NM³ of new controlled airspace that is required by the changes above 7000ft. This is to provide more efficient en-route connectivity, and is predominantly at higher altitudes and over the sea. As such this airspace is not expected to have a significant impact on General Aviation operations. Below 7,000ft there is a reduction in CAS of over 600 NM³. The sponsors believe that much of the released airspace is in areas that will be beneficial for General Aviation.
- 15. No cumulative effects are identified with respect to General Aviation access. That is to say that there are no negative changes described in the individual ACPs that would be considered worse than described, when considered alongside the proposals in neighbouring ACPs.

- 16. Additionally, over 5,000 NM³ of airspace has had classification reduced from Class A, mostly to Class C or Class D. This reduces the requirements for aircraft to be granted clearance to enter the airspace. Access to temporary reserved areas for gliding has also been maintained.
- 17. In conclusion, the cluster-wide 'with airspace change' option represents a significant £130m overall benefit which comprises of net benefits across the key performance criteria of noise, CO₂e, fuel and capacity.

2 Introduction

- 18. The UK's Airspace Modernisation Strategy (AMS) explains that achieving the objectives of airspace modernisation will maintain and improve the UK's high levels of aviation safety, boost efficiency, strengthen environmental sustainability and facilitate access for the ever-expanding range of competing airspace users.
- 19. Where changes are proposed that share the same airspace, there is benefit in taking forward those proposals concurrently, so that the proposals can be coordinated, competing demands can be assessed, and decisions made that are optimised for all users in aggregate. This rationale has been adopted for the UK's Future Airspace Strategy Implementation (FASI) airspace change programme, encompassing more than 20 airport Airspace Change Proposals (ACPs) across the UK.
- 20. A region of airspace above central Scotland is shared by Glasgow Airport, Edinburgh Airport and NATS En-route Limited (NERL), each of whom is progressing their own ACP under CAA CAP1616. This is referred to as the Scottish Terminal Control Area (ScTMA) cluster. The ACPs in the ScTMA cluster must adhere to CAP1616 guidance and the UK Airspace Change Masterplan (Iteration 3 ScTMA). Note that the term ScTMA cluster, which is used in this document and the Masterplan, is interchangeable with the term Scottish Airspace Modernisation, which is a more generic term used in consultation).
- 21. The Masterplan presents a Cumulative Analysis Framework (CAF) to capture information on interdependencies and trade-offs between ACPs. This is to ensure that cumulative and collective performance has been considered by the sponsors in a cluster when progressing their individual, but linked ACPs through the CAP1616 process.
- 22. The CAF has 3 parts as shown in Table 1 overleaf.
- 23. CAF Part 1 (CAF1) provides a basis for sponsors to resolve design conflicts in advance of the Full Options Appraisal. As such CAF1 was completed earlier in the process and is reported in UK Airspace Change Masterplan (Iteration 3 ScTMA).
- 24. This report is for CAF Part 2 (CAF2) which provides information on how the consultation options in the three separate ACPs within the ScTMA cluster work together as a system. CAF2 is generated by combining information from each of the sponsors Full Options Appraisals. The result is a suite of tables and diagrams to match those presented in the Full Options Appraisals but which show 'cumulative' and 'collective' performance for the whole cluster, rather than performance for a single ACP. The CAF2 report has been collated from, and on behalf of, the individual ACPs by the Airspace Change organising Group (ACOG). For information about the role and function of ACOG see the ACOG website
- 25. CAF3 will be produced at stage 4 of the CAP1616 process. It will combine information from each of the sponsors Final Options Appraisal, which take into account any changes made by the sponsors to their designs following public consultation.

Table 3: CAF Stages CAF Phase	as Summarised in ScTMA Masterpl Key characteristics and use	lan Iteration 3 Link to CAP1616 and Masterplan
CAF1: Review of Route Interdependencies, Design Conflicts and Trade-Offs	 Provides an assessment of design conflicts and trade-offs between route options in interdependent ACPs Provides a basis for sponsors to resolve design conflicts considering collective performance (including cumulative impacts) Trade-off information may be drawn from Initial Options Appraisals Qualitative, with additional quantitative assessment added where necessary 	 Prior to sponsors starting CAP1616 Full Options Appraisal Outputs will be presented in the Stage 3 Consult Gateway submissions and Masterplan Iteration 3 CAF1 information in Masterplan Iteration 3 demonstrates how cumulative impact, collective impact and trade-offs have been accounted for in the design preconsultation
CAF2: Full CAF	 Identifies cumulative impact of consultation options Generation of information to describe collective cluster -wide performance and trade-offs for consultation options Comparison between cluster-wide consultation option(s) and the cluster-wide baseline Information drawn from Full Options Appraisals 	 After each sponsor in the cluster has completed Full Options Appraisal Outputs are presented in the Stage 3 Consult Gateway submissions (and Masterplan Iteration 4 which will be produced after consultation)
CAF3: Final CAF	 Identifies cumulative impacts of final designs Generation of information to describe collective performance and trade-offs in the final cluster-wide design Comparison between final cluster-wide design and the cluster-wide baseline Information drawn from Final Options Appraisals 	 After each sponsor in the cluster has completed Final Options Appraisal Outputs will be presented in Masterplan Iteration 4 Comparison of CAF3 and CAF2 output in Masterplan Iteration 4 will demonstrate how cumulative impact, collective impact and trade-offs have been affected by the design updates in Stage 4

3 CAF2 Methodology

- 26. CAF2 provides information on how the consultation options in the three separate ACPs in the ScTMA cluster work together as a system. CAF2 is generated by combining information from each sponsors Full Options Appraisals. The result is a suite of tables and diagrams to match those presented in the Full Options Appraisals in the cluster's individual ACPs, but which show 'cumulative' and 'collective' performance for the whole cluster, rather than the performance for a single ACP.
- 27. **Cumulative data** helps individual stakeholders identify where and how they may be affected by more than one ACP, for example a community may be overflown by 10 aircraft a day from one ACP and 20 from another ACP giving a cumulative overflight impact from both ACPs of 30 over flights per day for that community. (Note that for ScTMA the CAF shows there are no such cumulative impacts because of the distance between Glasgow and Edinburgh Airports this is demonstrated through the data presented in this report and its annexes).
- 28. **Collective data** describes the overall performance of all the ACPs when considered as a cluster. This is of relevance to stakeholders with interests which are not location specific. For example those interested in climate change may have little interest in how much CO₂e individual ACPs generate as it is the total effect of the cluster on global climate change that is most relevant to them.
- 29. In both cumulative and collective cases the methodology is, in the simplest terms, to add together the performance data from the individual CAP1616 Full Options Appraisals within the cluster, and present an equivalent for the cluster level performance. For full details of the methodology for CAF2 see the Masterplan Appendices 1 and 2.
- 30. Note that the focus of CAF2 is on the quantitative data. It does not seek to collate and repeat the local qualitative assessment unless they are deemed significant to the overall case for change. For full local detail see the individual ACPs.

Analysis Period and Forecasting

- Implementation is currently planned for 2027. Each of the contributing Full Option Appraisal annual analyses have therefore used the 2027 and 2036, respectively as the year of implementation (year 1), and year 10 following implementation. The rest of this document presents ScTMA cluster data for this analysis period.
- 32. 'Current-day' information is also required by CAP1616 and presented here on a collective basis. This data relates to 2023, apart from the Glasgow Airport noise data for which the latest year available at the time of analysis was 2022. The collective noise data for the 'current year' is therefore a composite of 2023 data for Edinburgh Airport and 2022 data for Glasgow Airport. It should therefore be considered as indicative of 'current day' impacts rather than a definite set of results for a specific year.

Comparison

The following sections present information on the collective performance of the ScTMA cluster. Section 6 presents the baseline data and sections 7 and 8 show how the performance of the cluster-wide 'with airspace change' option differs from the 'without airspace change' baseline. The data behind the comparisons is presented in the annexes.

Combined CO₂e/Fuel Methodology

The nature of CO_2 e benefits make it necessary for interdependent ACPs to collaborate to analyse CO_2 e, rather than progressing entirely separate analyses. This shared methodology is presented in Annex A.

Methodology for Other Impact Categories

There is no interdependency between the ScTMA sponsors assessment for the other appraisal impact categories including noise and overflight. Therefore, they have progressed them independently and details of their methodologies are included the individual ACPs.

Other Shared Assumptions

There are a number of assumptions that underpin full options appraisal. Assumptions that have been shared between sponsors are listed in Annex C.

Rounding

37. In their Full Options Appraisal sponsors have rounded the result they have presented. CAF2 has worked from the data provided by sponsors, which in some cases has been unrounded source data, and then applied the same rounding protocol. This means that the CAF2 results are an accurate collective representation of the data supplied, but in places may not exactly match the sum of the rounded data presented in the individual Full Options Appraisals.

Safety

38. This document is focussed on the option appraisal impact categories rather than safety. Sponsors have captured safety assurance information relevant to their changes, and to how their changes interface with neighbouring ACPs, in their respective ACPs.

Annexes

39. This document and its annexes present the Tables and Figures in the same way as the individual Full Options Appraisals they are built from. These appraisals sought to present data in the main report that is most relevant to each category, with the annexes presenting any remaining data sets/figures. The CAF2 report and annexes follows the same principles with the distribution of data between the main report and annexes matching the airport submissions as far as practical (given the difference in presentation between the Full Options Appraisals).

4 Consultation Options

40. The consultation options being presented by each sponsor are as listed in Table 4.

Table 4: ACP Consultation Options

Sponsor	Sponsor Option
NERL	Option 1 – Modernised ATS Route Structure including providing connectivity to
	Standard Instrument Departure route end points, STARs and holding facilities.
Glasgow	Option 5 - PBN Approach Transitions with vectors. PBN Standard Instrument
Airport	Departure routes with no offsets
Edinburgh	Option 1 – PBN Standard Instrument Departure routes and Approach
Airport	Transitions with vectoring only for safety and weather

5 Interdependencies and Trade Offs

- 41. In developing their Stage 2 options into viable options for the cluster, sponsors have considered interdependencies between the ACPs. Interdependencies encountered in the generation of a viable cluster-wide design are reported in the ScTMA Masterplan Iteration 3.
- 42. Following the development of viable cluster-wide designs, sponsors have performed Full Options Appraisals on their ACP options to determine which will be presented in their consultation material (their 'consultation options').
- 43. In the case of the ScTMA cluster, there were no interdependencies between the sponsors options for the Full Options Appraisal. This means that none of the options in one ACP's Full Options Appraisal were dependent on another sponsor choosing a specific option for their ACP.
- 44. By extension, this also means that there were no interdependencies or trade-offs to consider with respect to the consultation option assessed in CAF2 (i.e. all combinations of consultation options are compatible)².
- While there may be no interdependencies or trade-offs between consultation options, there remains a requirement for CAF2 to describe cumulative performance (or lack of in this case) and collective performance. This information is provided in this CAF2 report (and annexes) so that stakeholders can assess how the ScTMA cluster as a whole may affect them.

ScTMA CAF2, Issue 2.0 11

-

² Note that while there were no trade-offs between the *consultation options* assessed in CAF2, there were two design conflicts and associated trade-offs between the NERL and Glasgow Airport ACPs that were identified in the design phase. These occurred in the design process prior to Full Options Appraisl and were documented through th CAF1 process. For further details of the design conflicts see Appendix C of the Masterplan.

6 Cluster-Wide Baseline "Without Airspace Change"

- All sponsors have analysed a Baseline performance for their part of the cluster-wide design. This section collates that data to provide information on the cluster-wide baseline performance for a 'current year' (this is based on last full year of data available when the sponsors undertook the analysis, which was either 2023 or 2022 depending on the analysis in question), together with projected performance for the years 2027 (year of implementation) and 2036 (10 years following implementation).
- 47. Figure 1 shows the existing, published, departure and arrival route structure for Edinburgh and Glasgow Airports for reference (note that there are no published arrival routes below 7000ft that are regularly flown and so none are shown). Above and beyond these routes lies the network of routes that provide onward connections for Glasgow and Edinburgh Airports, and which are used by other flights crossing the region (these include routes above 7000ft used by Prestwick Airport flights). These are not shown on Figure 1 because the diagram would become too crowded and difficult to interpret. The existing "without airspace change" airspace structure for the ScTMA is fully described in the UK AIP. Details of the specific structures that are proposed to change can be found in the individual ACP submissions/consultations.
- 48. Figure 2 show the pattern of overflights seen today on these routes below 7000ft. This shows flight paths from a 2 week period covering both Easterly and Westerly operations at each airport. This figure is provided for information only. For detailed descriptions of the scope of the changes below and above 7,000ft please see the individual ACP submissions/consultations.

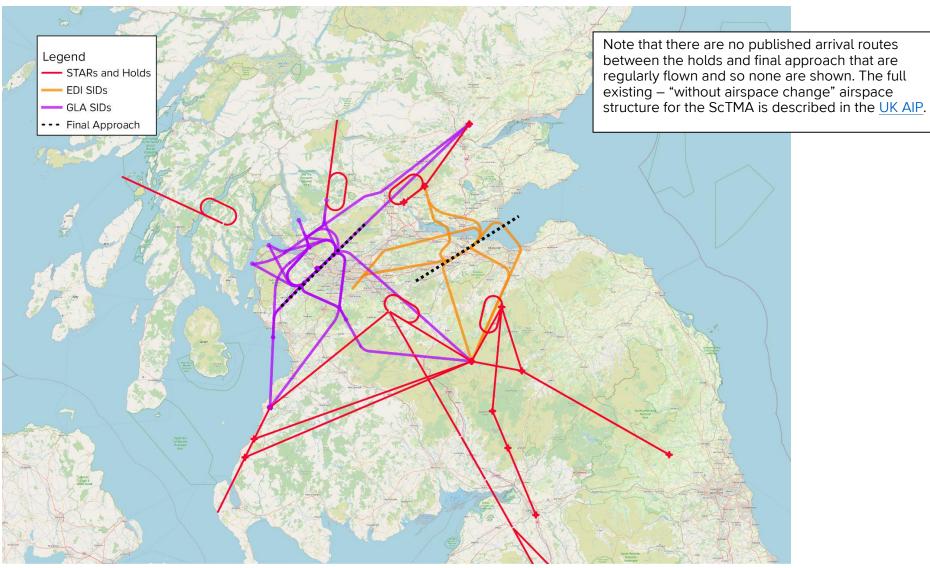


Figure 1: 'Without Airspace Change' Standard Instrument Departures, Holds and Standard Arrivals Routes for Edinburgh and Glasgow Airports

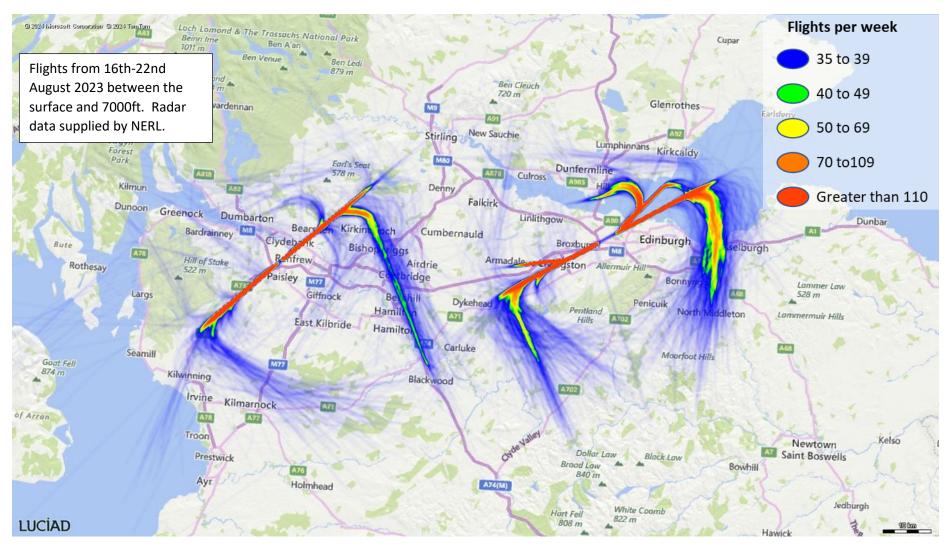


Figure 2: Current Day Glasgow and Edinburgh Airport Flight Paths Below 7000ft for Easterly and Westerly Operations

L_{Aeq} for "Without Airspace Change" Baseline - Communities

- 49. The following tables show collective L_{Aeq} noise contour data for the 'without airspace change' current day scenario (2022/2023³), 2027 (year of implementation) and 2036 (10 years following implementation). For each contour band, the area of the contour is presented along with the total population, total households and number of potentially noise sensitive buildings within each band.
- The contour figures are provided in Annex D. In all case these show there is considerable distance between the contours at the different airports and so there is no cumulative impact to consider. For more detailed views of contours or each airport, please see the individual ACP submissions/consultation material relevant to the area of interest.

³ The current year is the latest full year sample available at the time the sponsor commenced its analysis. For Glasgow Airport the year used was 2022, for Edinburgh Airport the year used was 2023)

Table 5: L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings				
			51	86.98	47,100	101,500	34	1	18	28	226				
	Without Airspace		54	47.87	15,400	32,600	9	0	5	10	132				
				57	25.26	4,200	8,700	1	0	1	2	66			
2022 (GLA)			60	12.98	1,300	2,600	1	0	1	1	23				
2023 (EDI)		Change L _{Aeq16hr}	∟Aeq16hr	L _{Aeq16hr}	L Aeq16hr	710410111	63	6.76	200	400	0	0	0	0	3
	Change									Change	66	2.13	100	100	0
			69	1.14	0	0	0	0	0	0	0				
			72	0.68	0	0	0	0	0	0	0				

Table 6: L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings					
			51	108.06	58,700	126,800	50	1	20	33	257					
	Without	L _{Aeq16hr}	54	59.93	22,100	47,000	16	0	10	18	162					
			57	32.52	6,500	13,800	4	0	1	4	81					
2027			60	16.83	2,100	4,300	1	0	1	2	44					
2027	Airspace		63	8.64	200	500	0	0	0	0	10					
	Change							66	2.9	100	200	0	0	0	0	1
			69	1.52	0	0	0	0	0	0	0					
			72	0.86	0	0	0	0	0	0	0					

Table 7: L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings		
			51	121.53	64,700	139,800	54	1	22	39	284		
	Without	L _{Aeq16hr}	54	68.14	27,200	58,400	21	1	11	21	177		
				57	37.37	8,100	17,300	6	0	1	5	101	
2036			60	19.59	2,400	4,900	1	0	1	2	49		
2036	Airspace Change		L _{Aeq16hr}	63	10.11	500	900	0	0	0	0	1 5	
	Change						66	3.48	200	300	0	0	0
			69	1.81	<100	<100	0	0	0	0	0		
			72	1	0	0	0	0	0	0	0		

Table 8: L_{Aeq, 8 Hr}, Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings								
			45	134.62	69,800	150,600	63	1	25	50	291								
	Without Airspace Change	L _{Aeq8hr}	48	76.42	34,400	73,100	31	0	17	26	191								
			51	40.52	12,400	25,400	10	0	5	12	112								
				54	20.44	2,600	5,100	1	0	1	2	58							
2022 (GLA)			57	10.5	900	1,800	1	0	1	0	17								
2023 (EDI)			60	3	100	200	0	0	0	0	2								
	Change										63	1.51	0	0	0	0	0	0	0
												66	0.81	0	0	0	0	0	0
			69	0.5	0	0	0	0	0	0	0								
			72	0.31	0	0	0	0	0	0	0								

Table 9: L_{Aeq, 8 Hr}, Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings			
			45	151.19	75,500	163,300	66	1	27	55	336			
			48	85.87	45,500	97,700	35	1	19	28	209			
	Without Airspace Change	L_{Aeg8hr}	51	46.44	15,000	31,200	13	0	6	14	122			
			54	23.72	2,900	6,000	1	0	1	2	64			
2027			57	12.17	1,100	2,300	1	0	1	1	24			
2027			60	3.59	200	300	0	0	0	0	3			
						63	1.85	<100	<100	0	0	0	0	0
			66	0.95	0	0	0	0	0	0	0			
			69	0.56	0	0	0	0	0	0	0			
			72	0.36	0	0	0	0	0	0	0			

Table 10: L_{Aeq, 8 Hr}, Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings		
			45	167.66	80,100	173,200	68	1	28	58	360		
	Without	L _{Aeq8hr}			48	95.89	50,100	107,700	38	1	19	28	232
			51	52.48	18,200	38,100	15	0	8	17	138		
			54	27.26	3,800	7,800	1	0	1	2	70		
2036			57	14.01	1,400	2,700	1	0	1	1	36		
2030	Airspace Change		60	4.39	200	500	0	0	0	0	7		
	Change				63	2.25	100	100	0	0	0	0	0
						66	1.13	0	0	0	0	0	0
			69	0.64	0	0	0	0	0	0	0		
			72	0.41	0	0	0	0	0	0	0		

N60 and N65 contours "Without Airspace Change" Baseline - Communities

- The following tables show collective N65 and N60 noise contour data for the 'without airspace change' current day scenario (2022/2023 ⁴), the year of proposed implementation (2027) and 10 years following proposed implementation (2036). For each contour band, the area within the contour is presented along with the population and number of potentially noise sensitive buildings within each band.
- The contour figures are provided in Annex D. In all case these show there is sufficient distance between the contours at the different airports to assume there is no cumulative impact to consider. For more detailed views of contours or each airport, please see the individual ACP submissions/consultation material relevant to the area of interest.

⁴ The current year is the latest full year sample available at the time the sponsor commenced its analysis. For Glasgow Airport the year used was 2022, for Edinburgh Airport the year used was 2023)

Table 11: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			5	229.53	102,900	220,500	80	1	36	78	583
	\\/ithaut		10	182.45	85,400	184,600	73	1	31	65	374
2022 (GLA)	Without	N65 (Day)	20	138.44	70,800	153,300	64	1	25	50	298
2023 (EDI)	Airspace Change	1100 (Day)	50	78.89	35,900	77,700	26	1	17	26	211
	Change		100	30.61	6,000	13,000	4	0	3	1	106
			200	2.28	0	0	0	0	0	0	0

Table 12: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	Without 2027 Airspace N Change		5	256.16	112,300	240,200	82	1	39	83	692
			10	203.44	90,100	194,200	74	1	33	66	427
2027		NEE (Day)	20	157.17	76,500	165,800	68	1	27	53	323
2027		N65 (Day)	50	99.17	49,700	107,600	34	1	18	34	241
			100	48.01	14,300	31,100	8	1	5	7	144
			200	3.99	<100	100	0	0	0	0	0

Table 13: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			5	268.28	116,500	249,300	83	1	39	85	744
	\A/:+b = +		10	212.19	94,300	202,800	74	1	35	67	441
2036	Without	e N65 (Day)	20	166.05	79,100	171,200	72	1	28	56	353
2036	Airspace Change		50	107.9	53,800	116,900	41	1	19	36	253
	Change		100	54.32	19,600	43,100	11	1	7	9	152
			200	20.03	3,900	8,300	3	0	2	1	77

Table 14: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	\A/:+b+		5	258.09	117,600	251,000	85	1	41	88	669
2022 (GLA)	Without	N60 (Night)	10	157.74	75,800	163,500	67	1	27	51	348
2023 (EDI)	Airspace Change	INOW (INIGIII)	20	58.24	14,700	32,100	8	1	6	2	130
	Change		50	1.15	0	0	0	0	0	0	0

Table 15: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	\		5	281.63	125,300	267,600	89	1	41	97	741
2027	Without	NICO (Niight)	10	170.54	82,600	177,500	69	1	27	57	370
2027	Airspace Change	N60 (Night)	20	78.46	26,900	59,300	1 3	1	7	3	187
	Change		50	2.76	<100	<100	0	0	0	0	1

Table 16: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	S cenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	\A ('41 4		5	306.39	134,300	287,600	94	2	42	98	776
2036	Without	N60 (Night)	10	190.89	92,700	199,900	74	1	32	61	405
2036	Airspace Change	inow (inigiti)	20	89.07	32,100	70,700	24	1	7	7	212
	Change		50	3.31	<100	100	0	0	0	0	6

Overflight Contours "Without Airspace Change" Baseline - Communities

- The following tables show collective overflight data for the 'without airspace change' current day scenario (2022/2023⁵), the year of proposed implementation (2027) and 10 years following proposed implementation (2036). For each contour band, the area within the contour is presented along with the population and number of potentially noise sensitive buildings within each band.
- The contour figures are provided in Annex D. In all case these show there is sufficient distance between the contours at the different airports to assume there is no cumulative impact to consider. For more detailed views of contours or each airport, please see the individual ACP submissions/consultation material relevant to the area of interest.

⁵ The current year is the latest full year sample available at the time the sponsor commenced its analysis. For Glasgow Airport the year used was 2022, for Edinburgh Airport the year used was 2023)

Table 17: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
		rspace Overflights	5	1385.97	367,400	797,400	273	8	109	254	3,510
2022 (CLA)	2022 (GLA) Without		10	743.34	250,100	549,400	187	6	81	165	2,130
2022 (GLA) 2023 (EDI)	Airspace		20	370.3	150,700	331,400	113	4	58	104	1,182
2023 (EDI)	Change	Day	50	76.36	33,600	74,000	27	1	8	18	77
			100	18.27	5,700	12,700	3	1	3	1	5

Table 18: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings	
		Overflights	5	1765.27	450,500	972,600	331	13	136	328	4,296	
	Without 2027 Airspace Change		Overflights	10	941.45	278,200	611,000	210	7	89	186	2,338
2027			20	501.44	191,500	421,900	139	5	69	123	1,659	
		Day	50	107.57	43,400	94,600	32	1	11	27	123	
			100	31.85	13,800	30,700	6	1	6	2	17	

Table 19: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			5	1990.36	485,800	1,048,900	353	21	149	345	4,878
	Without		10	1089.14	290,900	638,800	220	7	95	191	2,521
2036		Overflights Day	20	581.44	212,800	468,700	152	5	74	129	1,871
2036	Airspace Change		50	123.08	48,000	104,600	34	1	12	29	146
	Change		100	47.85	20,700	46,300	18	1	7	9	33
			200	4.59	2,800	6,200	3	0	1	0	3

Table 20: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
2022 (GLA)	Without	Overflighte	5	239.86	85,600	187,600	57	2	34	39	764
2022 (GLA) 2023 (EDI)	Airspace	Overflights	10	64.5	24,800	54,300	20	1	10	13	61
2023 (LDI)	Change	Night	20	15.93	3,900	8,700	3	0	3	1	5

Table 21: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	Without	Overfliabte	5	292.23	104,100	228,900	68	3	38	49	1,136
2027	Airspace	Overflights Night	10	88.18	38,500	84,100	30	1	10	22	83
	Change	rvignt	20	25.17	9,300	20,700	4	1	6	2	10

Table 22: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
	Without 2036 Airspace Change	Overflights Night	5	366.89	124,500	274,300	80	4	41	59	1,389
2036			10	105.86	43,900	95,900	32	1	12	24	119
			20	33.26	12,300	27,400	6	1	6	2	19

Local Air Quality for "Without Airspace Change" Baseline - Communities

The individual ACPs include an assessment of potential Loal Air Quality impacts from each proposal. In each case they conclude that the nature of the change unlikely to have a significant impact on local air quality and the impact is considered negligible. Local air quality is not assessed further for any options and so is not considered further in this CAF2 assessment.

Greenhouse Gas Emissions for "Without Airspace Change" Baseline – Wider society

56. Annual and per flight greenhouse gas emissions are presented in Table 23 for the 'without airspace change' scenario⁶.

Table 23: CO₂e "Without Airspace Change" Baseline, Current Day (2023) and 2027-2036

Year	Annual total GHG emissions (KtCO2e)	Average GHG emissions per flight (kgCO2e)
2023	1208.9	5,961.1
2027	1569.1	6,067.9
2028	1591.3	6,077.1
2029	1613.4	6,086.0
2030	1635.5	6,094.7
2031	1657.7	6,103.2
2032	1679.8	6,111.5
2033	1702.0	6,119.6
2034	1724.1	6,127.5
2035	1746.2	6,135.2
2036	1768.4	6,142.8

57. The impact of CO₂e is not location specific and so there is no cumulative impact to consider.

ScTMA CAF2, Issue 2.0 25

_

⁶ Please refer to the greenhouse gas emissions methodology section provided in Annex B for contextual information on how the use of planned flight data in the NERL modelling may affect this result

Tranquillity for "Without Airspace Change" Baseline – Wider society

- The following tables show the collective area and number of locations/spaces that are relevant to the consideration of tranquillity and sit within the L_{Aeq}, N65, N60 and overflight contours. These data cover the 'without airspace change' current day scenario (2022/2023⁷), the year of proposed implementation (2027) and 10 years following proposed implementation (2036). As can be seen in the tables there are a number of Candidate Quiet Areas (CQA), Country Park, Gardens and designated Landscapes and Scheduled Ancient Monuments (SAMs) that are overflown, but no National Scenic Areas (NSA) or National Parks that are overflown below 7,000ft more than five times a day/night in the baseline. For maps of the receptors see the individual ACP Full Options Appraisal submissions.
- 59. The tranquillity data is based on the noise and overflight contours, for which it has already been concluded there is no cumulative impact, there is likewise no cumulative impact to consider regarding locations/spaces relevant to the consideration of tranquillity. For a more detailed view of how noise and overflight contours affect particular locations, please see the individual ACP submissions/consultation material relevant to that area.

Table 24: Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (dB)	Country	Parks	cq	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	⁄ls
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	1	0.07	5	3.69	4	5.28	0	0	0	0	14	0.35
			54	0	0	4	1	4	3.8	0	0	0	0	10	0.22
	With a st		57	0	0	2	0.24	3	1.91	0	0	0	0	8	0.15
2022 (GLA)	Without Airspace	1	60	0	0	0	0	3	0.84	0	0	0	0	5	0.05
2023 (EDI)	Change	L _{Aeq16hr}	63	0	0	0	0	2	0.36	0	0	0	0	4	0.04
	Change		66	0	0	0	0	1	0.03	0	0	0	0	2	0.02
			69	0	0	0	0	0	0	0	0	0	0	1	0
			72	0	0	0	0	0	0	0	0	0	0	0	0

⁷ The current year is the latest full year sample available at the time the sponsor commenced its analysis. For Glasgow Airport the year used was 2022, for Edinburgh Airport the year used was 2023)

Table 25: Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (dB)	Country	Parks	co	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	1 s
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	1	0.13	5	4.43	5	6	0	0	0	0	21	0.4
			54	1	0	5	2.17	4	4.53	0	0	0	0	13	0.26
	M/ith out		57	0	0	4	0.58	4	2.76	0	0	0	0	8	0.19
2027	Without Airspace	1	60	0	0	0	0	3	1.25	0	0	0	0	8	0.09
2027	Change	L _{Aeq16hr}	63	0	0	0	0	2	0.56	0	0	0	0	4	0.04
	Change		66	0	0	0	0	1	0.16	0	0	0	0	3	0.02
			69	0	0	0	0	0	0	0	0	0	0	2	0
			72	0	0	0	0	0	0	0	0	0	0	0	0

Table 26: Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (dB)	Country	Parks	cq	A	Garden Desigr Landso	nated	National	l Parks	NS	A	SAN	1s
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	1	0.2	5	4.74	5	6.48	0	0	0	0	22	0.41
			54	1	0.02	5	3.11	4	4.93	0	0	0	0	13	0.28
	M/ith out		57	0	0	4	0.76	4	3.34	0	0	0	0	9	0.2
2036	Without	1	60	0	0	1	0.02	3	1.61	0	0	0	0	8	0.12
2030	Airspace Change	L _{Aeq16hr}	63	0	0	0	0	3	0.71	0	0	0	0	4	0.04
	Change		66	0	0	0	0	2	0.25	0	0	0	0	3	0.02
			69	0	0	0	0	1	0	0	0	0	0	2	0.01
			72	0	0	0	0	0	0	0	0	0	0	1	0

Table 27: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per	Country	Parks	CQ	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	1s
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	10	14.8	10	7.17	31	37.99	0	0	0	0	230	6.02
2022 (GLA)	Without	Overflights	10	5	10.29	9	6.45	20	29.27	0	0	0	0	131	4.08
2022 (GLA) 2023 (EDI)	Airspace	Overflights	20	3	4.23	7	4.93	11	14.93	0	0	0	0	76	2.72
2023 (LDI)	Change	Day	50	0	0	3	0.68	3	0.66	0	0	0	0	13	0.45
			100	0	0	1	0.38	2	0.24	0	0	0	0	3	0.09

Table 28: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per	Country	Parks	CQ	A	Garder Desigi Lands	nated	National	. Parks	NS	Ą	SAN	⁄ls
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	10	15.79	13	7.82	34	41.43	0	0	0	0	261	6.76
	Without	Overflighte	10	6	10.91	10	6.8	25	30.75	0	0	0	0	166	4.71
2027	Airspace	Overflights	20	4	7.2	7	5.68	17	22.92	0	0	0	0	100	3.49
	Change	Day	50	0	0	4	2.38	3	2.41	0	0	0	0	16	0.55
			100	0	0	2	0.51	2	0.4	0	0	0	0	5	0.32

Table 29: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per	Country	Parks	CQ	A	Garder Desigr Lands	nated	National	. Parks	NS	A	SAN	Иs
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	10	16.28	13	8.07	38	44.65	0	0	0	0	306	7.58
	\A/i+b o+		10	6	12.5	10	6.93	25	33.43	0	0	0	0	195	5.25
2036	Without	Overflights	20	4	7.77	8	5.94	18	24.6	0	0	0	0	107	3.7
2030	Airspace Change	Day	50	0	0	4	2.75	3	2.74	0	0	0	0	17	0.58
	Change		100	0	0	2	0.57	2	0.5	0	0	0	0	9	0.38
			200	0	0	0	0	1	0	0	0	0	0	2	0.03

Biodiversity Data for "Without Airspace Change" Baseline – Wider Society

- The ACPs identify that their changes would not result in likely significant effects on the conservation objectives of any European site. The flights in the baseline do not overlap below the HRA scoping level of 3,000ft and so there are no cumulative effects to consider.
- However, the sponsors have provided the following tables to show the number and area of European Sites (RAMSAR, SAC, SPA) that are collectively overflown below 7,000ft for the 'without airspace change' current day scenario (2022/2023⁸), the year of proposed implementation (2027) and 10 years following proposed implementation (2036). For maps showing these areas see the individual ACP appraisals.

Table 30: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per	RAM!	SAR	SA	С	SP	Α
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	16	13.9	8	19.77	19	243.46
2022 (CLA)	Without	Overeliedate	10	13	8.01	2	0.38	15	186.8
2022 (GLA) 2023 (EDI)	Airspace	Overflights Day	20	7	5.9	0	0	9	101.11
2023 (LDI)	Change	Day	50	1	0.62	0	0	3	17.08
			100	1	0.38	0	0	3	8.62

⁸ The current year is the latest full year sample available at the time the sponsor commenced its analysis. For Glasgow Airport the year used was 2022, for Edinburgh Airport the year used was 2023)

Table 31: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per	RAM!	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	17	16.51	9	30	21	277.21
	Without	Overflighte	10	14	10.32	7	2.51	17	204.68
2027	Airspace	Overflights Day	20	11	6.89	0	0	13	121.24
	Change	Day	50	1	2.28	0	0	3	26.8
			100	1	0.51	0	0	3	12.22

Table 32: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per	RAM	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	17	17.73	9	32.09	22	294.9
	\^/;+lo		10	16	12	8	13.59	19	220.41
2036	Without	Overflights	20	11	7.23	0	0	13	143.6
2036	Airspace Change	Day	50	1	2.63	0	0	3	36.04
	Change		100	1	0.57	0	0	3	14.36
			200	0	0	0	0	0	0

Table 33: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day

Year	Scenario	Metric	Contour (Flights per	RAM	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
2022 (01.4)	Without	O	5	4	3.67	0	0	6	75.89
2022 (GLA) 2023 (EDI)	Airspace	Overflights Night	10	1	0.64	0	0	3	18.55
2023 (LDI)	Change	INIGIIL	20	1	0.45	0	0	3	9.99

Table 34: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027

Year	Scenario	Metric	Contour (Flights per	RAM		SA		SP	
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
	Without	Overflinkte	5	4	4.41	0	0	6	87.22
2027	Airspace	Overflights Night	10	1	0.66	0	0	3	20.46
	Change	Night	20	1	0.49	0	0	3	11.4

Table 35: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036

Year	Scenario	Metric	Contour (Flights per Day)	RAMSAR		SAC		SPA	
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
2036	Without	Overflights Night	5	6	5.27	0	0	8	107.81
	Airspace		10	1	0.69	0	0	3	27.07
	Change		20	1	0.55	0	0	3	13.58

Capacity/Resilience for "Without Airspace Change" Baseline - Wider society

Table 36 shows Glasgow Airport's modelled pre-departure ground delay for 2027 and 2036 whereas and NERLs has modelled network delay for the same periods. Edinburgh presented only qualitative information relating to delay so are not represented in this table.

Table 36: Pre-departure Ground Dealy and Network Delay for "Without Airspace Change" Baseline, 2027 & 2036

Without Airspace Change	Delay Minutes			
Without Anopase onange	2027	2036		
Pre Departure Ground Delay (Glasgow Only)	46,989	62,320		
Network Delay	114,971	176,051		

Access – General Aviation

63. Details of the existing controlled airspace structures can be found in <u>Section ENR 6.6 and 6.7 in the UK AIP.</u>

Economic Impact from Increased Effective Capacity for "Without Airspace Change" Baseline - General Aviation/Commercial Airlines

The current cost of the delay figures from Table 36 have been monetised by the sponsors. See the individual ACPs for description of the values used to monetise the delay. This monetised value represents baseline from which the economic impact of increased effective capacity is calculated. This monetisation is captured in the Cost Benefit Section 8.

Fuel burn for "Without Airspace Change" Baseline - General Aviation/Commercial Airlines

65. Fuel burn is proportional to CO₂e and so is calculated by the same method/assumptions as described in Annex A.

Table 37: Fuel Burn for "Without Airspace Change" Baseline, Current Day (2023) and 2027-2036 & Total

Year	Annual total fuel burn (Kt)	Annual Fuel Burn Cost (£) 2024 prices	Average Fuel Burn per Flight (kg)
2023	380.2	£ 260,785,756	1,874.5
2027	493.4	£ 338,489,871	1,908.2
2028	500.4	£ 343,265,898	1,911.0
2029	507.4	£ 348,041,924	1,913.8
2030	514.3	£ 352,817,951	1,916.6
2031	521.3	£ 357,593,977	1,919.2
2032	528.2	£362,370,004	1,921.9
2033	535.2	£ 367,146,030	1,924.4
2034	542.2	£ 371,922,057	1,926.9
2035	549.1	£ 376,698,083	1,929.3
2036	556.1	£ 381,474,110	1,931.7

Training Costs for "Without Airspace Change" Baseline – Commercial Airlines

66. This category relates to costs incurred through changing the airspace and so it is zero for the "without Airspace change" baseline.

Other Costs for "Without Airspace Change" Baseline - Commercial Airlines

This category relates to costs incurred through changing the airspace and so it is zero for the "without Airspace change" baseline.

Operational Costs for "Without Airspace Change" Baseline – Airport / ANSP

68. This category relates to costs incurred through changing the airspace and so it is zero for the "without Airspace change" baseline.

Deployment Costs for "Without Airspace Change" Baseline - Airport / ANSP

69. This category relates to costs incurred through changing the airspace and so it is zero for the "without Airspace change" baseline.

⁹ The costs shown are not discounted – see Section 8 for Net Present Value calculations

Other Costs for "Without Airspace Change" Baseline – Airport / ANSP

70. This category relates to costs incurred through changing the airspace and so it is zero for the "without Airspace change" baseline.

7 Collective Performance – Cluster-Wide "With Airspace Change"

This section presents data showing the difference between Cluster "With Airspace Change" Proposal and the Baseline data set. The absolute results are also presented for key primary metrics, with absolute values for secondary and other metrics presented in Annex E.

Figure 3 shows the set of routes associated with the proposed cluster-wide "With Airspace Change" option. These include the PBN Standard Instrument Departures routes and PBN approach transitions from the Edinburgh and Glasgow Airport ACPs, and the holds and Standard Instrument Arrival routes for both airports that are included in the NERL ACP. These are provided for reference only, for details see the relevant ACP submission/consultation. Above and beyond these routes lies the network of routes for which NERL is also proposing change (these include routes above 7000ft used by Prestwick Airport flights). These are not shown on Figure 1 as the diagram would become too crowded; for this detail see the NERL ACP.

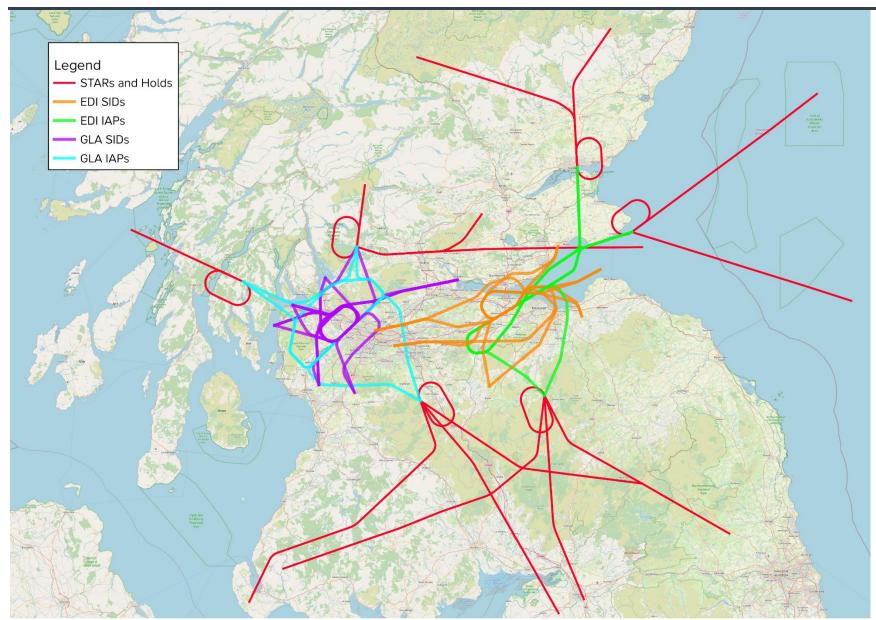


Figure 3: Cluster-Wide "With Airspace Change" Proposal Standard Instrument Departures (SIDs), Approach Transitions (IAPs), Standard Arrival Routes (STARs) and Holds for Edinburgh and Glasgow Airports

Noise for Cluster-Wide "With Airspace Change" Proposal - Communities

- 72. The output from the <u>'TAG noise workbook aviation'</u> is a primary measure of the adverse effects to health and quality of life for the purpose of the CAA's decision-making on a proposal (CAP1616i, November 2023, Parar 5.17).
- 73. TAG has been used by each sponsor to assess total adverse noise effects over a 10-year appraisal period (2027 2036). The individual assessments have been aggregated for this report.
- 74. The collective full TAG assessment results are presented in Table 38. The monetised net present value (NPV) of L_{Aeq} noise changes of this option is c.£32m (2024 prices). This positive value reflects a net benefit (i.e. a reduction in total adverse effects on health and quality of life from noise).
- However, it should be noted that the population data also in Table 38 shows that this net benefit includes some people would experience more noise, albeit that all cases these would be outnumbered by people experiencing less noise. The monetised difference is captured in the cost benefit analysis (see Section 88).

Table 38: Cluster-Wide "With Airspace Change" Proposal TAG Noise Assessment Results

NPV Total Noise (2024 prices)	NPV Sleep (2024 prices)	NPV Amenity (2024 prices)	NPV AMI (2024 prices)	NPV Stroke (2024 prices)	NPV Dementia (2024 prices)	individuals experiencing increased daytime noise in forecast year	individuals experiencing reduced daytime noise in forecast year	individuals experiencing increased night time noise in forecast year	individuals experiencing reduced night time noise in forecast year
£31,566,333	£19,576,635	£8,467,515	£35,742	£1,389,597	£2,096,844	8,756	48,729	21,472	74,830

L_{Aeq} for Cluster-Wide "With Airspace Change" Proposal - Communities

76. The TAG results are based on L_{Aeq} contour analysis. The difference between Cluster-Wide "With Airspace Change" Proposal and the baseline in term of L_{Aeq} contour statistics is presented below. All the associated contour diagrams are provided in the Annex E. In all case the contour diagrams show there is sufficient distance between the contours at the different airports to assume there is no cumulative impact to consider.

Table 39: Comparison Table for L_{Aeq, 16 Hr}, ,Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			51	-3.53	-6,300	-13,900	-7	0	0	-1	-8
	ce I	2027	54	-1.57	-2,500	-5,600	-2	0	-1	-1	-2
\ \ / i+ la			57	-0.31	-200	-500	0	0	0	-1	-3
With Airspace			60	-0.01	-100	-200	0	0	0	0	-3
Change			63	-0.02	0	-100	0	0	0	0	0
Change			66	-0.02	0	0	0	0	0	0	0
			69	0	0	0	0	0	0	0	0
			72	0	0	0	0	0	0	0	0

Table 40: Comparison Table for L_{Aeq, 16 Hr}, ,Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			51	-2.76	-5,400	-12,000	-4	0	0	-6	0
	ace I	2036	54	-1.88	-3,700	-8,000	-4	0	1	-2	3
\\/;+lo			57	-0.52	-700	-1,600	-1	0	0	0	-14
With Airspace			60	-0.02	-100	-100	0	0	0	0	-1
Change			63	-0.03	-100	-200	0	0	0	0	-3
Change			66	-0.02	0	0	0	0	0	0	0
			69	0.01	0	0	0	0	0	0	0
			72	-0.01	0	0	0	0	0	0	0

Table 41: Comparison Table for LAeq, 8 Hr, , Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			45	-2.53	-4,500	-10,400	-8	0	1	-5	-19
			48	-5.73	-11,100	-24,700	-6	0	-2	-3	-11
			51	-1.77	-2,200	-4,900	-5	0	0	-4	-5
With	h		54	-0.12	0	100	0	0	0	0	-3
Airspace	Comparison	2027	57	0	0	-100	0	0	0	0	-2
Change	L_{Aeq8hr}	2027	60	-0.01	0	0	0	0	0	0	1
Change	-жецоп		63	-0.02	0	0	0	0	0	0	0
			66	0	0	0	0	0	0	0	0
			69	0	0	0	0	0	0	0	0
			72	0	0	0	0	0	0	0	0

Table 42: Comparison Table for $L_{Aeq, 8\,Hr}$, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			45	0.01	-2,800	-6,900	-7	0	1	-3	8
		2036	48	-5.46	-4,700	-10,100	-3	0	-1	-2	-22
			51	-1.93	-3,200	-7,100	-5	0	-2	-5	-11
\	Companson		54	-0.2	-300	-700	0	0	0	0	1
With			57	0.04	0	0	0	0	0	0	0
Airspace Change	L_{Aeq8hr}	2030	60	-0.04	0	0	0	0	0	0	0
Change	-дечоп		63	-0.01	0	0	0	0	0	0	0
			66	0.01	0	0	0	0	0	0	0
			69	0	0	0	0	0	0	0	0
			72	0	0	0	0	0	0	0	0

77. As L_{Aeq} is the primary noise metric the absolute values are also provided for reference below.

Table 43: L_{Aeq, 16 Hr}, ,Daytime Cluster-Wide "With Airspace Change" Proposal, 2027

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings	
			51	104.53	52,400	112,900	43	1	20	32	249	
			54	58.36	19,500	41,500	14	0	9	17	160	
	\\/i+b		57	32.21	6,300	13,300	4	0	1	3	78	
2027	With Airspace Change	L _{Aeq16hr}	60	16.82	2,000	4,100	1	0	1	2	41	
2027			L _{Aeq16hr}	63	8.62	200	400	0	0	0	0	10
			66	2.88	100	200	0	0	0	0	1	
			69	1.52	0	0	0	0	0	0	0	
			72	0.86	0	0	0	0	0	0	0	

Table 44: L_{Aeq, 16 Hr}, ,Daytime Cluster-Wide "With Airspace Change" Proposal, 2036

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			51	118.77	59,300	127,800	50	1	22	33	284
	With		54	66.26	23,600	50,300	17	1	12	19	180
			57	36.85	7,400	15,700	5	0	1	5	87
2036			60	19.57	2,400	4,800	1	0	1	2	48
2030	Airspace	L _{Aeq16hr}	63	10.08	400	700	0	0	0	0	12
	Change		66	3.46	200	300	0	0	0	0	1
			69	1.82	<100	<100	0	0	0	0	0
			72	0.99	0	0	0	0	0	0	0

Table 45: L_{Aeq, 8 Hr}, , Night-Time Cluster-Wide "With Airspace Change" Proposal, 2027

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings	
			45	148.66	71,000	152,800	58	1	28	50	317	
	With	L _{Aeq8hr}	48	80.14	34,400	73,000	29	1	17	25	198	
			51	44.67	12,800	26,300	8	0	6	10	117	
			54	23.6	2,900	6,000	1	0	1	2	61	
2027			57	12.17	1,100	2,300	1	0	1	1	22	
2027	Airspace			60	3.58	200	300	0	0	0	0	4
	Change		63	1.83	<100	<100	0	0	0	0	0	
			66	0.95	0	0	0	0	0	0	0	
			69	0.56	0	0	0	0	0	0	0	
			72	0.36	0	0	0	0	0	0	0	

Table 46: L_{Aeq, 8 Hr}, , Night-Time Cluster-Wide "With Airspace Change" Proposal 2036

Year	Scenario	Metric	Contour (dB)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			45	167.67	77,200	166,300	61	1	29	55	368
		ı	48	90.43	45,400	97,600	35	1	18	26	210
			51	50.55	15,000	31,000	10	0	6	12	127
	With		54	27.06	3,500	7,100	1	0	1	2	71
2036			57	14.05	1,400	2,700	1	0	1	1	36
2030	Airspace Change	L _{Aeq8hr}	60	4.35	200	500	0	0	0	0	7
	Change		63	2.24	100	100	0	0	0	0	0
			66	1.14	0	0	0	0	0	0	0
			69	0.64	0	0	0	0	0	0	0
			72	0.41	0	0	0	0	0	0	0

N60 and N65 contours for Cluster-Wide "With Airspace Change" Proposal - Communities

- 78. Number above contours show the locations where the number of events (i.e., flights) exceeds a pre-determined noise level, expressed in dB L_{ASmax}. For example, N65 contours show the number of events where the noise level from those flights exceeds 65 dB L_{ASmax}.
- 79. Number above contours are described in CAP1616i as secondary metrics and are not monetised or used to determine 'adverse noise effects'. Difference tables are presented below for information. The tables below show the difference in each contour band compared to the 'without airspace change' scenario. Absolute values and the contour diagrams are provided in Annex E. In all case the contour diagrams show there is sufficient distance between the contours at the different airports to assume there is no cumulative impact to consider.

Table 47: Comparison Table for N65, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings		
			5	50.92	900	1,900	1	0	5	6	31		
) A /:+!-			10	23.04	4,700	10,500	0 0 0	3	82				
With	Comparison N65 (Day)	2027	2027	2027	20	-0.1	-2,000	-4,800	-3	0	1	-4	41
Airspace Change					50	-3.62	-5,400	-11,800	-5	0	0	-4	-2
Change			100	-1.51	-1,100	-2,400	0	0	0	0	-2		
			200	0	0	0	0	0	0	0	0		

Table 48: Comparison Table for N65, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings		
			5	54.73	-1,000	-2,500	0	0	6	5	31		
\			10	22.85	3,700	8,300 3	0	-2	3	81			
With Airspace	Comparison N65 (Day)	2036	20	1.65	-1,800	-4,100	-6	0	0	-4	41		
Change			2036	2036	50	-4.28	-6,100	-13,400	-9	0	0	-4	-10
Change			100	-2.01	-2,400	-5,400	-3	0	0	0	-4		
			200	-2.25	-1,900	-4,000	-3	0	-2	-1	-26		

Table 49: Comparison Table for N60 , Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
\ \ /:+!-			5	17.36	-7,600	-16,800	-5	0	-2	-7	-63
With	Comparison N60 (Night)	2027	10	-11.52	-2,000	-4,400	-4	0	2	-4	-21
Airspace Change			20	-4.74	-5,100	-11,400	-4	0	-1	-1	-20
Change			50	0	0	0	0	0	0	0	0

Table 50: Comparison Table for N60 , Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
\			5	30.67	-11,900	-26,400	-8	-1	-3	-7	-52
With	Comparison	2036	10	-8.6	-1,100	-2,600	-4	0	0	-5	-29
Airspace Change	N60 (Night)	2030	20	-2.19	-4,800	-10,800	-8	0	0	-3	-3
Change			50	0	0	0	0	0	0	0	0

Overflight Contours for Cluster-Wide "With Airspace Change" Proposal - Communities

- 80. The measurement of 'overflight' is a secondary metric that can be useful for explaining the impacts of airspace change proposals.
- Overflight contours are described in CAP1616i as secondary metrics and are not monetised or used to determine 'adverse noise effects'. The overflight metric is defined in CAP1498¹⁰.
- Difference tables are presented below for information. The tables below show the difference in each contour band compared to the 'without airspace change' scenario. Absolute values and the contour diagrams are provided in Annex E. In all case the contour diagrams show there is sufficient distance between the contours at the different airports to assume there is no cumulative impact to consider.

Table 51: Comparison Table for Overflight, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			5	-418.19	-114,800	-251,700	-76	-6	-27	-61	-1,426
With	Comparison		10	-51.94	-103,900	-228,500	-66	-5	-15	-35	-361
Airspace	Overflights	2027	20	40.49	-93,500	-206,100	-72	-4	-25	-57	-1,048
Change	Day		50	126.86	7,400	16,300	-6	0	4	-3	140
			100	45.04	2,500	5,300	0	0	0	0	48

Table 52: Comparison Table for Overflight, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
			5	-581.7	-126,800	-279,800	-81	-14	-35	-39	-1,791
\	Composicon		10	-97.34	-98,700	-217,000	-63	-5	-16	-30	-387
	With Comparison Airspace Overflights Change Day	2036	20	27.59	-96,900	-213,700	-70	-4	-27	-52	-839
		2030	50	198.1	11,400	25,500	-3	0	6	-2	184
Change			100	64.44	600	1,000	-9	0	2	-6	76
			200	2.38	-2,300	-5,200	-3	0	-1	0	3

¹⁰ Note that the 48.5 degree cone definition of overflight has been used by all sponsors.

Table 53: Comparison Table for Overflight, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
With	Comparison		5	170.43	-28,600	-63,800	-25	-2	-10	-16	-417
Airspace	Overflights	2027	10	69.18	-1,500	-3,600	-12	0	4	-11	116
Change	Night		20	-1.65	-4,800	-10,700	-1	-1	-3	-1	0

Table 54: Comparison Table for Overflight, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per Day)	Area (km²)	Total Households	Total Population	Number of Schools	Number of Hospitals	Number of Carehomes	Number of Places of Worship	Number of Listed Buildings
With	Comparison		5	125.2	-44,200	-98,400	-30	-3	-13	-23	-463
Airspace	Overflights	2036	10	96.43	1,400	3,000	-8	0	3	-7	117
Change	Night		20	66.31	4,900	10,900	1	0	1	-1	84

Local Air Quality for Cluster-Wide "With Airspace Change" Proposal - Communities

83. Not considered further – see para 55.

Greenhouse Gas Emissions for Cluster-Wide "With Airspace Change" Proposal – Wider society

- TAG has been used to assess the greenhouse gas impact over a 10-year appraisal period. The change in CO₂e emissions over the 10-year appraisal period is a reduction of 219.8kT of which 127.7kT is traded in the UK ETS and 92.0kT is not¹¹. This results in a total monetised net present value (NPV) benefit of £54m (including monetisation of both traded and non traded).
- 85. Annual greenhouse gas emissions (CO₂e) are presented in Table 55 for "With Airspace Change" Proposal 12.

Table 55: Comparison Table for CO₂e, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027-2036 & Total

	Without Airs	pace Change	With Aisp	ace Change	Diffe	erence
Year	Annual total GHG emissions (KtCO2e)	Average GHG emissions per flight (kgCO2e)	Annual total GHG emissions (KtCO2e)	Average GHG emissions per flight (kgCO2e)	Annual total GHG emissions (KtCO2e)	Average GHG emissions per flight (kgCO2e)
2027	1,569.1	6,067.9	1,550.3	5,995.1	- 18.8	- 72.9
2028	1,591.3	6,077.1	1,571.7	6,002.5	- 19.5	- 74.6
2029	1,613.4	6,086.0	1,593.2	6,009.7	- 20.2	- 76.3
2030	1,635.5	6,094.7	1,614.6	6,016.7	- 20.9	- 78.0
2031	1,657.7	6,103.2	1,636.0	6,023.6	- 21.6	- 79.6
2032	1,679.8	6,111.5	1,657.5	6,030.3	- 22.3	- 81.2
2033	1,702.0	6,119.6	1,678.9	6,036.8	- 23.0	- 82.8
2034	1,724.1	6,127.5	1,700.4	6,043.2	- 23.7	- 84.3
2035	1,746.2	6,135.2	1,721.8	6,049.5	- 24.4	- 85.8
2036	1,768.4	6,142.8	1,743.3	6,055.6	- 25.1	- 87.2

ScTMA CAF2, Issue 2.0 46

-

¹¹ These figures are rounded (see paragraph 37 in Section 3)

¹² Please refer to the greenhouse gas emissions methodology section provided in Annex B for contextual information on how the use of planned flight data in the NERL modelling may affect this result

Tranquillity for Cluster-Wide "With Airspace Change" Proposal – Wider society

The difference to impact on designated tranquil sites of cluster-wide "With Airspace Change" proposal for daytime noise and overflight metrics, and for both 2027 and 2036 are shown below. Contour diagrams are provided in Annex E.

Table 56: Comparison Table for Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (dB)	Country	Parks	CQ	A	Garden Design Landso	nated	National	Parks	NS	A	SAN	⁄ls
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	0	-0.01	0	0.98	0	0.36	0	0	0	0	-2	-0.01
			54	0	0	0	-0.12	0	0.38	0	0	0	0	-2	-0.01
\			57	0	0	0	-0.05	-1	0.03	0	0	0	0	0	-0.01
With	Comparison	2027	60	0	0	0	0	0	-0.01	0	0	0	0	0	0
Airspace Change	L _{Aeq16hr}	2027	63	0	0	0	0	0	-0.04	0	0	0	0	0	0
Change			66	0	0	0	0	0	-0.03	0	0	0	0	0	0
			69	0	0	0	0	0	0	0	0	0	0	0	0
			72	0	0	0	0	0	0	0	0	0	0	0	0

Table 57: Comparison Table for Tranquillity Sites in Relation to $L_{Aeq, 16 Hr}$, Daytime, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (dB)	Country	Parks	CQ	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	1s
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	0	-0.02	0	1.02	0	0.36	0	0	0	0	0	0
			54	0	0	0	0.13	0	0.37	0	0	0	0	-1	-0.02
\			57	0	0	0	-0.08	0	0.1	0	0	0	0	0	-0.01
With Airspace	Comparison	2036	60	0	0	0	-0.01	0	-0.03	0	0	0	0	0	-0.01
Change	L _{Aeq16hr}	2030	63	0	0	0	0	0	-0.03	0	0	0	0	0	0
Change			66	0	0	0	0	-1	-0.03	0	0	0	0	0	0
			69	0	0	0	0	0	0	0	0	0	0	0	0
			72	0	0	0	0	0	0	0	0	0	0	0	0

Table 58: Table for Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime, Cluster-Wide "With Airspace Change" Proposal, 2027

Year	Scenario	Metric	Contour (dB)	Country	Parks	co	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	1s
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	1	0.12	5	5.41	5	6.36	0	0	0	0	19	0.39
			54	1	0	5	2.05	4	4.91	0	0	0	0	11	0.25
	\		57	0	0	4	0.53	3	2.79	0	0	0	0	8	0.18
2027	With	1	60	0	0	0	0	3	1.24	0	0	0	0	8	0.09
2027	Airspace Change	L _{Aeq16hr}	63	0	0	0	0	2	0.52	0	0	0	0	4	0.04
	Change		66	0	0	0	0	1	0.13	0	0	0	0	3	0.02
			69	0	0	0	0	0	0	0	0	0	0	2	0
			72	0	0	0	0	0	0	0	0	0	0	0	0

Table 59: Table for Tranquillity Sites in Relation to L_{Aeq, 16 Hr}, Daytime, Cluster-Wide "With Airspace Change" Proposal, 2036

Year	Scenario	Metric	Contour (dB)	Country	Parks	cq	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	1s
				Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			51	1	0.18	5	5.76	5	6.84	0	0	0	0	22	0.41
			54	1	0.02	5	3.24	4	5.3	0	0	0	0	12	0.26
	\A/i+la		57	0	0	4	0.68	4	3.44	0	0	0	0	9	0.19
2036	With Airspace	1	60	0	0	1	0.01	3	1.58	0	0	0	0	8	0.11
2030	Change	LAeq16hr	63	0	0	0	0	3	0.68	0	0	0	0	4	0.04
	Change		66	0	0	0	0	1	0.22	0	0	0	0	3	0.02
			69	0	0	0	0	1	0	0	0	0	0	2	0.01
			72	0	0	0	0	0	0	0	0	0	0	1	0

Table 60: Comparison Table for Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per	Country	Parks	CQ	A	Garder Desigr Landse	nated	Nationa	l Parks	NS	A	SAN	1s
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	0	5.93	6	-0.1	-10	-18.43	1	1.66	1	0.27	-78	-2.77
With	Comparison		10	2	7.33	1	-0.56	-11	-20.31	1	0.32	0	0	-51	-2.3
Airspace	Overflights	2027	20	1	-1.44	-2	-0.61	-9	-17.32	0	0	0	0	-23	-1.6
Change	Day		50	2	1.55	1	0.49	2	0.88	0	0	0	0	22	0.62
			100	1	0	0	0.08	1	0.87	0	0	0	0	17	0.41

Table 61: Comparison Table for Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per	Country	Parks	co	A	Garden Desigr Landso	nated	Nationa	l Parks	NS	A	SAN	Ms
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	0	5.71	7	-0.03	-14	-20.77	1	2.71	1	0.41	-121	-3.4
\A/;+la	Campariaan		10	2	6.32	2	-0.41	-8	-17.89	1	0.51	0	0	-65	-2.51
With	Comparison	2036	20	1	-1.38	-3	-0.8	-9	-18.82	0	0	0	0	-22	-1.72
Airspace Change	Overflights	2036	50	3	1.99	1	1.76	3	1.72	0	0	0	0	32	0.83
Change	Day		100	1	0.02	1	0.1	2	0.93	0	0	0	0	16	0.38
			200	0	0	0	0	0	0.01	0	0	0	0	1	0.24

Biodiversity Data for Cluster-Wide "With Airspace Change" Proposal

- The ACPs identify that their changes would not result in likely significant effects on the conservation objectives of any European site. The proposals do not overlap below the HRA scoping level of 3,000ft and so there are no cumulative effects to consider for the cluster -wide design..
- However, the sponsors have provided the following tables to show the difference to impact on designated biodiversity sites of cluster-wide "With Airspace Change" proposal for daytime and nighttime overflight metrics, and for both 2027 and 2036 are shown below. Absolute values and the contour diagrams are provided in Annex E.

Table 62: Comparison Table for Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per	RAM	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
			5	-8	-5.11	-2	-13.27	-6	-38.8
With	Comparison		10	-9	-4.01	-1	12.64	-7	-1.93
Airspace	Overflights	2027	20	-7	-1.58	3	10.63	-7	27.79
Change	Day		50	2	0.54	2	6.93	2	33.02
		100	1	0.08	0	0	1	20.9	

Table 63: Comparison Table for Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario Metric		Year	Contour Year (Flights per	RAMSAR		SAC		SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
		mparison	5	-8	-4.74	-2	-15.08	-7	-48.14
\	Camananiaan		10	-9	-5.3	-2	1.91	-7	-2.7
With	•		20	-6	-1.68	3	11.14	-4	28.77
Airspace Overflights Change Day	2036	50	3	2.33	3	8.92	3	57.54	
	Day		100	2	0.11	1	0.04	2	22.69
			200	0	0	0	0	1	3.94

Table 64: Comparison Table for Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027

Scenario	Metric	Year	Contour (Flights per	RAMS	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
With	Comparison		5	1	0.9	3	1.02	3	77.26
Airspace	Overflights	2027	10	2	0.18	1	0.08	2	22.59
Change	Night		20	0	-0.04	0	0	0	2.52

Table 65: Comparison Table for Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036

Scenario	Metric	Year	Contour (Flights per	RAM:	SAR	SA	С	SP	A
			Day)	Total	Area (km²)	Total	Area (km²)	Total	Area (km²)
With	Comparison		5	-1	0.21	3	1.1	1	66.59
Airspace	Overflights	2036	10	2	0.2	1	0.12	2	18.3
Change	Night		20	2	0.11	0	0	2	22.52

Capacity/Resilience for Cluster-Wide "With Airspace Change" Proposal - Wider society

Table 66 shows the reduction in pre-departure ground delay and network delay. Edinburgh Airport's proposal presented only qualitative assessment relating to delay so are not represented in Table 36. This qualitative assessment identified potential benefits to their delay as a result of new routes that avoid some of the busiest downstream sectors over the North of England

Table 66: Comparison Table for Delay, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027-2036 & Total

With Airspace Change	Delay Minutes			
With Amopase Change	2027	2036		
Pre Departure Ground Delay (Glasgow Only)	35,772	52,336		
Reduction in Pre Departure Ground Delay (Glasgow Only)	11,217	9,983		
Network Delay	150,500	226,886		
Reduction in Network Delay	35,529	50,835		
Total Reduction	46,746	60,818		

90. Both Edinburgh and Glasgow Airport identify that the published procedures today rely on conventional ground-based navigation aids called Very High Frequency Omnidirectional Range (VOR). This equipment is due to be decommissioned as part of a NERL UK wide programme under the Airspace Modernisation Programme. PBN routes would enable Edinburgh to continue operating as the VORs are decommissioned.

Access for Cluster-Wide "With Airspace Change" Proposal – General Aviation

- Ontrolled airspace (CAS) is airspace of defined dimensions within which an air traffic control (ATC) service is provided in accordance with the airspace classification. Its purpose is to create a known air traffic environment to achieve the objectives of the ATC service to prevent collisions between aircraft and to expedite and maintain an orderly flow of air traffic.
- Different types of airspace are classified by a lettering system specified by ICAO. Class A to E airspace is known as "controlled airspace"; Class G airspace is "uncontrolled airspace". The airspace classification type establishes the extent to which airspace users must comply with various regulations (embracing, for example, aircraft equipage, pilot qualification and applicable Rules of the Air) and the types of air traffic services that are provided in the airspace.
- In the UK, controlled airspace is established primarily to protect commercial air transport passenger flights from other flights and is where Air Traffic Control (ATC) needs to have positive control over aircraft flying in the airspace in order to maintain safe separation between them. Uncontrolled airspace is airspace where aircraft are able to fly freely without being constrained by instructions from ATC, unless they request such a service.
- Controlled airspace contains the network of corridors (known as Airways or the Route Network) which link the busy airspace surrounding the major airports. The controlled airspace around the major airports is designated variously as Control Zones (CTR), from the ground upwards to a specified upper limit; Control Areas (CTA), from a specified base level and Terminal Control Areas (TMA) which are larger CTAs normally encompassing a number of airports and extend from a specified base level above the ground to a specified upper limit. This can be seen in Figure 4.

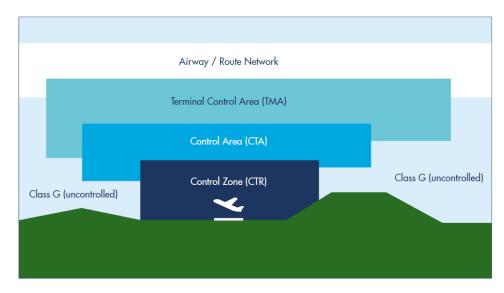


Figure 4: Illustrative example of CAS structures

- Airspace change must account for the needs of all airspace users and ensure that the amount of proposed CAS is the minimum necessary to achieve safe and efficient operations. The remainder of the section presents information on the cluster-wide "With Airspace Change" proposal to describe the scale of proposed CAS and its potential impact on airspace accessibility for the General Aviation sector. Greater detail of the individual changes is available within each of the sponsors ACP submissions/consultation documents where the operations within CAS are described and proposed size of CAS is justified.
- Table 67, Table 68 and Table 69 show breakdown of the volume of CAS changing classifications for eth whole cluster at all level, above 7000ft and below 7000ft respectively.
- 77. Table 67 shows that the overall proposal would result in an increased volume of CAS (and therefore decrease in Class G) of c.700 NM³. However, this is a 'net' value. Table 69 shows that c.1300 NM³ of new CAS is required by the changes above 7000ft to provide more efficient en-route connectivity. This airspace is predominantly at high level and much of it is over the sea (the Firth or Forth in particular). It is therefore not expected to have a major impact on non-commercial air traffic operations. Table 68 shows that below 7000ft there is a reduction of c.600 NM³. The sponsors believe that it is airspace in areas that will be most beneficial for General Aviation, a conclusion that will be tested during the consultation.

Table 67: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPs (All Levels).

Airspace Type	Baseline Volume	Option A Volume	Volume Change (nm3)
CTR	773.2	737.6	- 35.5
CTA	26,129.4	26,778.7	649.3
TMA	9,467.3	9,512.3	45.1
Total	36,369.8	37,028.7	658.8

Airspace Classification	Baseline Volume	Option A Volume	Volume Change (nm3)
Class A	6,714.0	1,417.8	- 5,296.2
Class C	0.0	3,713.2	3,713.2
Class D	17,691.7	19,307.5	1,615.8
Class E	11,964.2	12,590.1	626.0
Total	36,369.8	37,028.7	658.8

Table 68: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPs 7000ft and below only.

Airspace Type	Baseline Volume	Option A Volume	Volume Change (NM³)
CTR	773.2	737.6	- 35.5
CTA	7,667.8	7,100.1	- 567.7
TMA	9,467.3	9,468.8	1.5
Total	17,908.2	17,306.5	- 601.7

Airspace Classification	Baseline Volume	Option A Volume	Volume Change (NM³)
Class A	404.4	95.2	- 309.2
Class C	0.0	0.0	0.0
Class D	13,389.0	13,566.8	177.8
Class E	4,114.9	3,644.6	- 470.3
Total	17,908.2	17,306.5	- 601.7

Table 69: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPs above 7000ft.

Airspace Type	Baseline Volume	Option A Volume	Volume Change (NM³)
CTR	0.0	0.0	0.0
CTA	18,461.6	19,678.6	1,217.0
TMA	0.0	43.5	43.5
Total	18,461.6	19,722.1	1,260.5

Airspace Classification	Baseline Volume	Option A Volume	Volume Change (NM³)
Class A	6,309.6	1,322.6	- 4,987.0
Class C	0.0	3,713.2	3,713.2
Class D	4,302.7	5,740.7	1,438.0
Class E	7,849.3	8,945.5	1,096.2
Total	18,461.6	19,722.2	1,260.6

- 98. In terms of access to controlled airspace, all sponsors have confirmed appropriately equipped and operated General Aviation aircraft will be granted clearance into CAS where traffic density and capacity permits. Table 67 shows that a net reduction of over 5,000 NM³ in Class A airspace, which a corresponding increase in Class C, Class D and E which improves opportunities for access.
- 99. Reclassifying Class A to Class D or E helps to support VFR access of general aviation operators as VFR are not able to enter Class A.
- The net volume of airspace released is only part of the story. The useability of airspace that is released must also be considered, Figure 5 to Figure 27 show airspace 'cutaways' highlighting where the proposals would change the controlled airspace structure.
- Airspace Cutaway Diagrams Cutaways are only provided at 5000ft intervals from 500ft upwards where there is a change. e.g. the airspace for 1000ft is the same as that at 500ft and so the next cutaway shown after 500ft.
- 102. Figure 5 to Figure 27 are presented to show a simplified view, at a cluster wide level, of where airspace is changing from controlled (Class A, C, D or E) to uncontrolled (Class G). Note that it was found that showing both the classifications and the changes on the same cluster wide map made the maps overly complex and difficult to interpret. Further detailed information on the changes to classification are provided in the individual ACP submissions and consultation material. Note that only airspace structures wholly contained within the red ScTMA cluster ACP boundary are shown. This means other airspace structures, e.g. Newcastle CTA, are not shown these are outside the scope of this change and remain as today as do any other areas on, or over, the red line boundary.
- 103. It is immediately apparent from these Figures that both airports have amended airspace to make it more appropriate for a single runway operation, changing the shape of the CTRs. Other changes at lower levels relate to airspace reverting to Class G as the systemised design and modern operations do not require it, resulting in significant increase in Class G airspace below 7,000ft.
- 104. One area of significant change and increase in CAS is to the Northeast of Edinburgh. This is to provide CAS to protect aircraft arriving and departing on Edinburgh Airport's proposed routes to and from the north, east and southeast, which have been developed to move commercial flights over the sea as much as is practical. The totality of this increase can only be seen when considering both the Edinburgh Airport and NERL changes together.
- 105. There is nothing else in the changes of the individual ACPs that is exacerbated when they are brought together (i.e. there are no cumulative negative effects where the impact of the proposal as a whole is worse than the sum of its parts). Indeed, the total reduction in airspace between Glasgow and Edinburgh at the lower levels is only possible because Glasgow and Edinburgh Airports have been working together to align proposals and ensure that the net effect is to improve GA access in the areas where it is most beneficial. The diagrams below, combined with the more detailed information in the relevant ACPs, aim to help other airspace users to assess any impact on the requirements of their own operations so that feedback may be provided through consultation.
- As part of this overall proposal NERL has also sought to revise and extend Temporary Reserved Areas (Gliding) (TRA(G) in the vicinity of the ScTMA. TRA(G)s are used for gliding between FL195 and FL245. As these changes are entirely covered in the NERL ACP, the details are not repeated in this CAF2 document. For full details see the NERL ACP submission/consultation.

Figure 5: New and Released CAS 500ft-1499ft

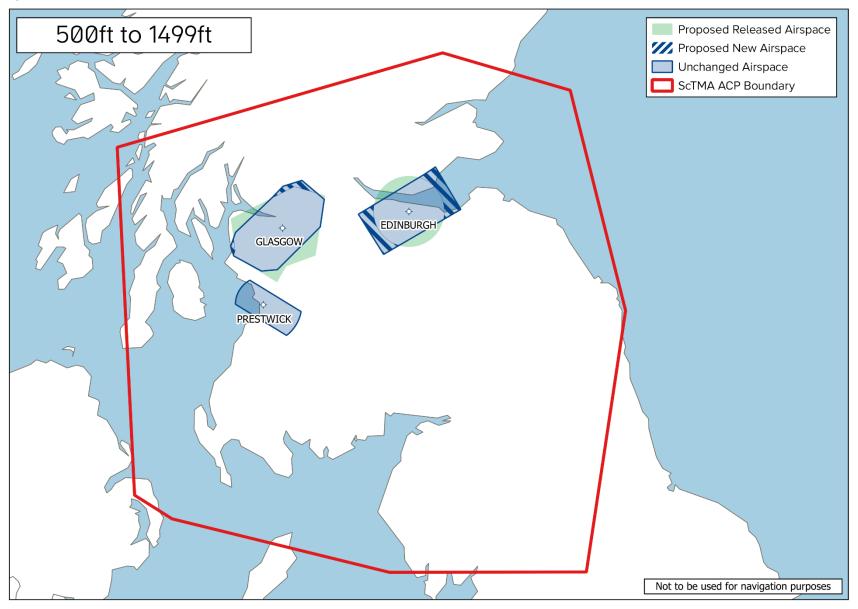


Figure 6: New and Released CAS 1500ft-1999ft

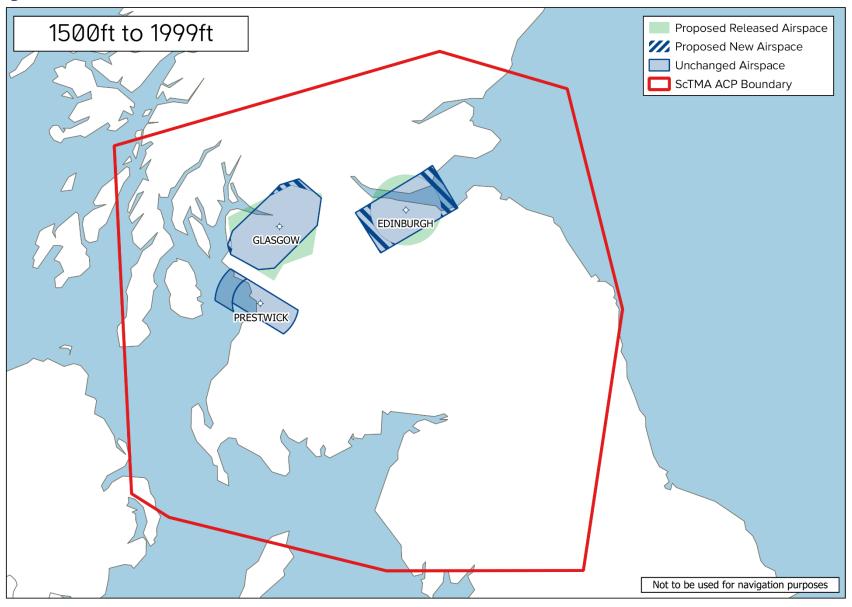


Figure 7: New and Released CAS 2000ft-2499ft

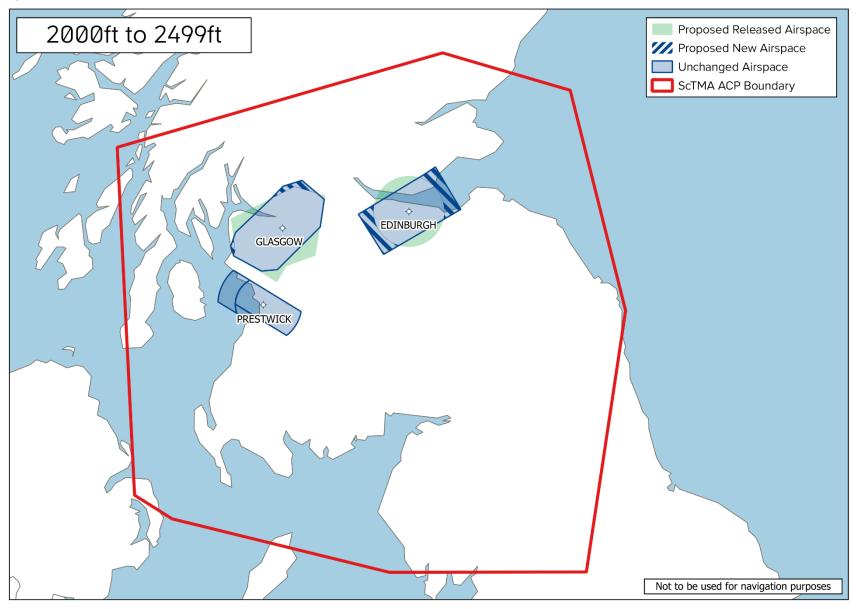


Figure 8: New and Released CAS 2500ft-2999ft

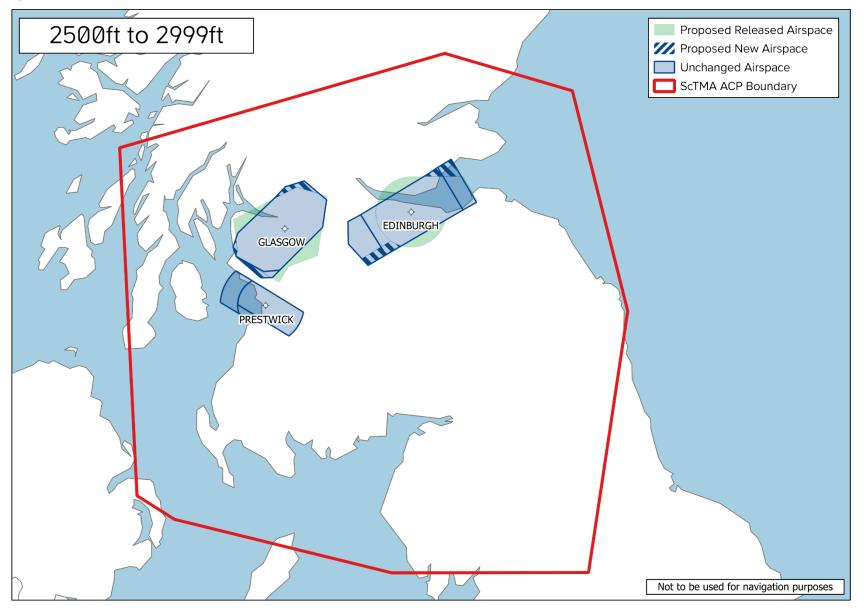


Figure 9: New and Released CAS 3000ft-3499ft

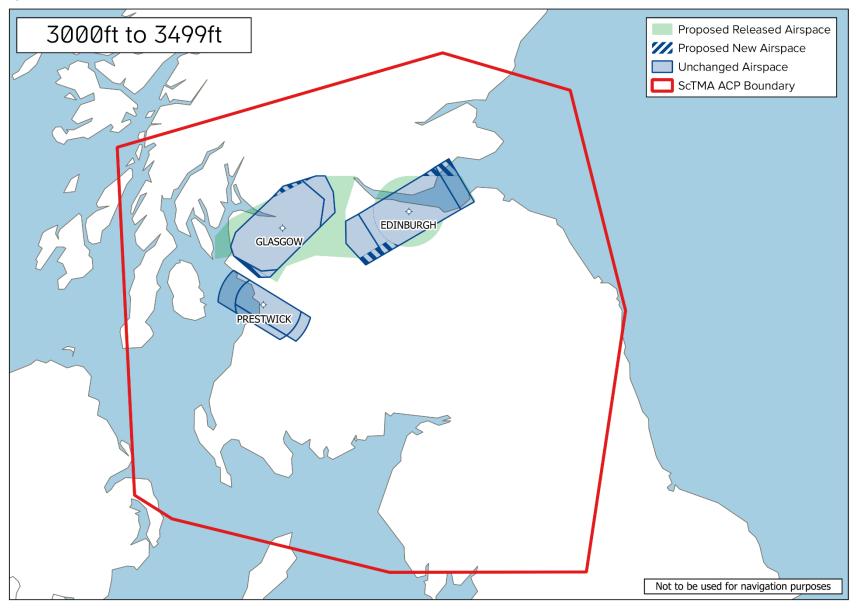


Figure 10: New and Released CAS 3500ft-3999ft

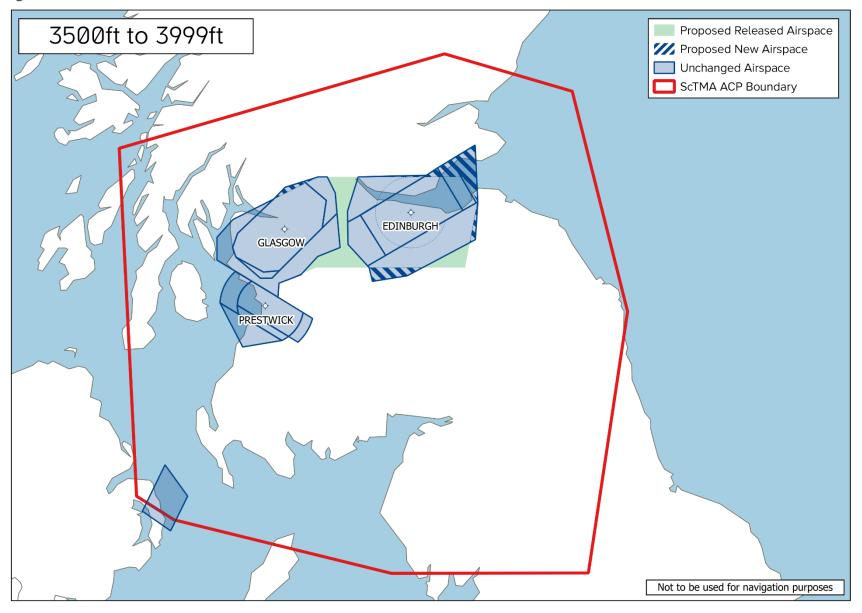


Figure 11: New and Released CAS 4000ft-4499ft

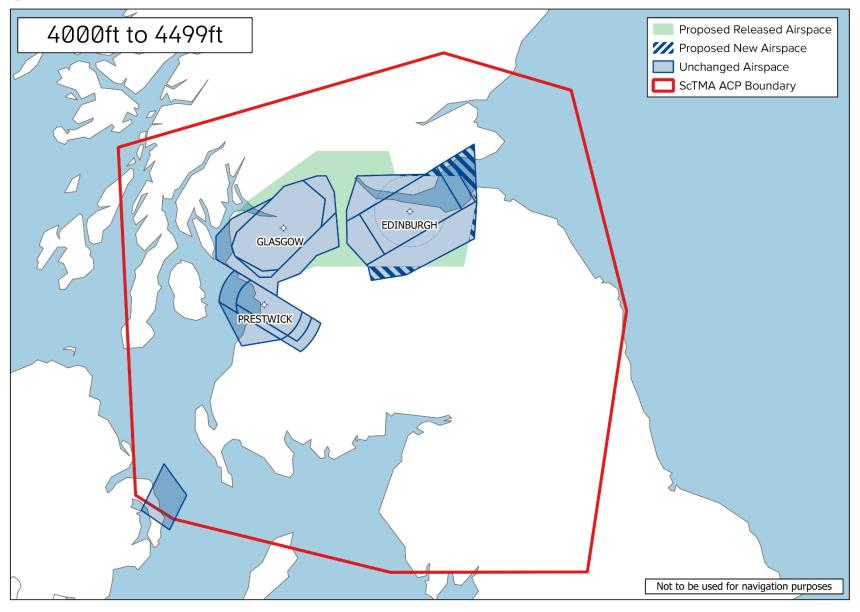


Figure 12: New and Released CAS 4500ft-4999ft

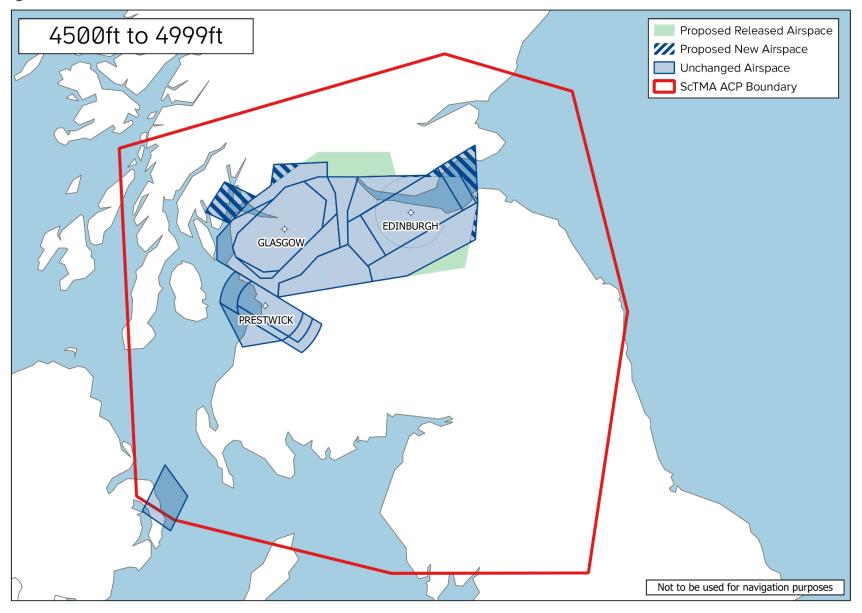


Figure 13: New and Released CAS 5000ft-5499ft

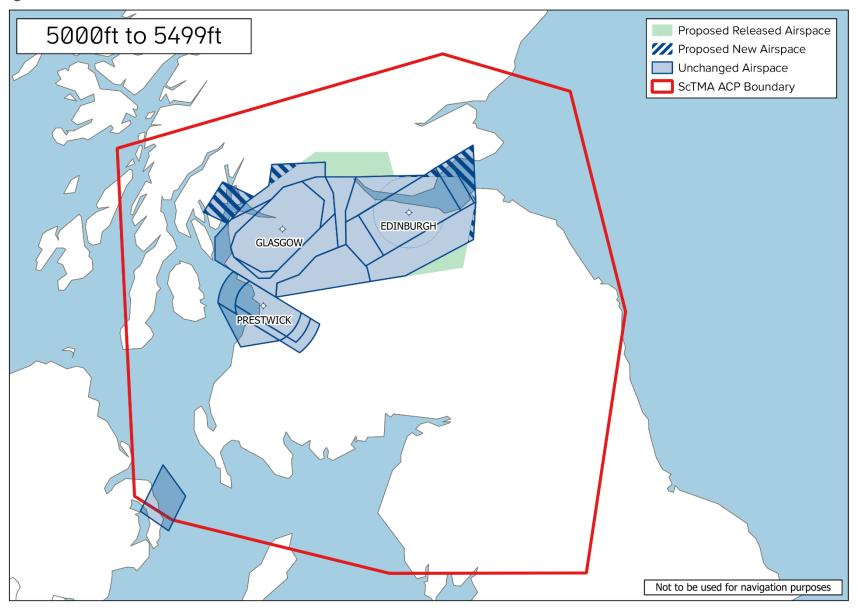


Figure 14: New and Released CAS 5500ft-5999ft

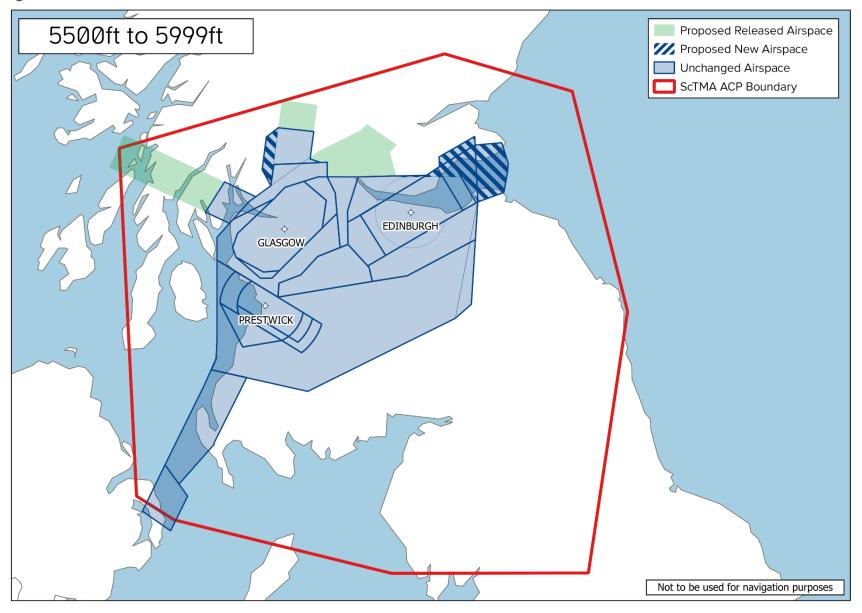


Figure 15: New and Released CAS 6000ft to <FL65

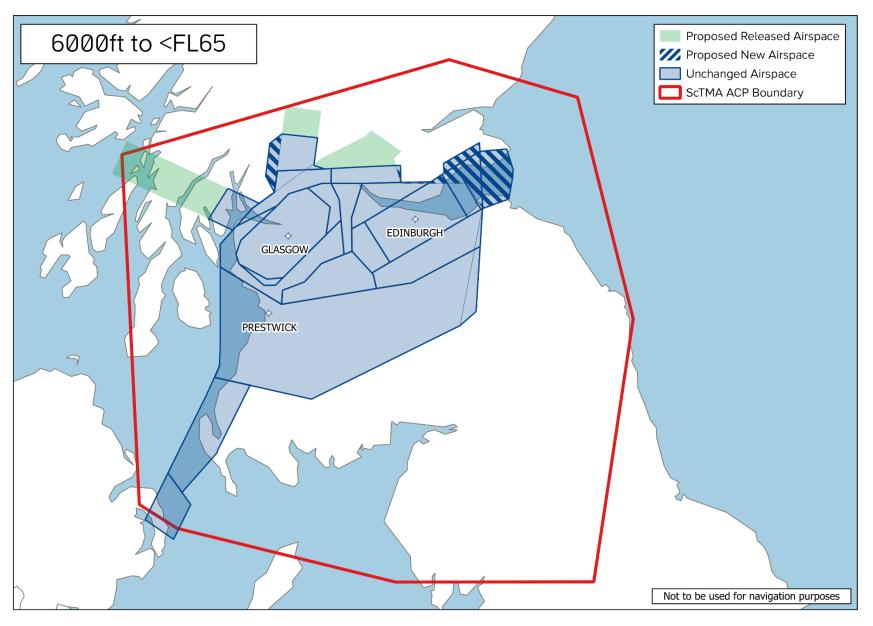


Figure 16: New and Released CAS FL65 to <FL70

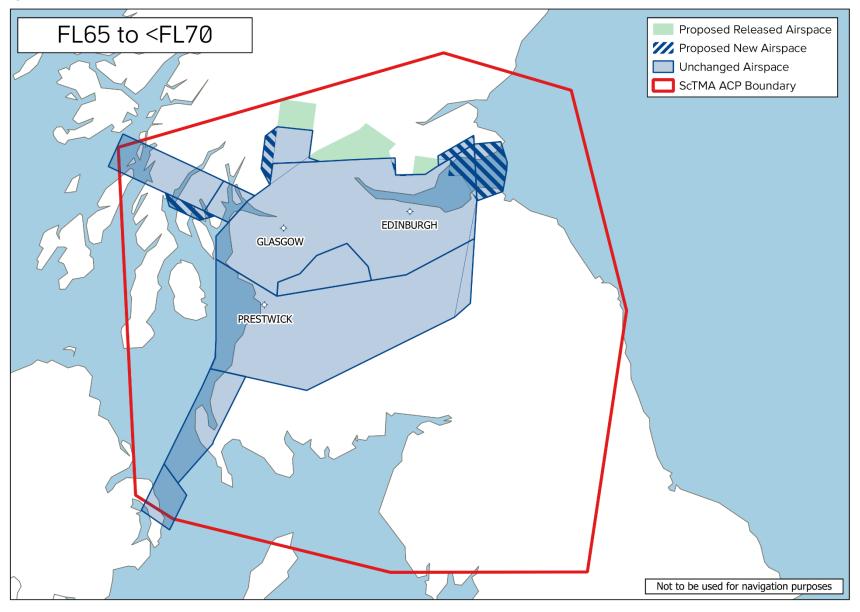


Figure 17: New and Released CAS FL70 to <FL75

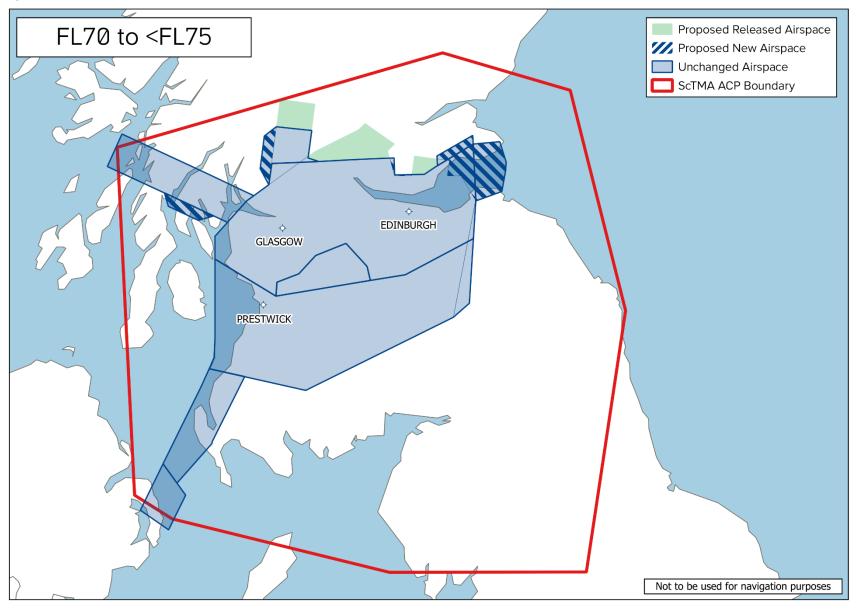


Figure 18: New and Released CAS FL75 to <FL80

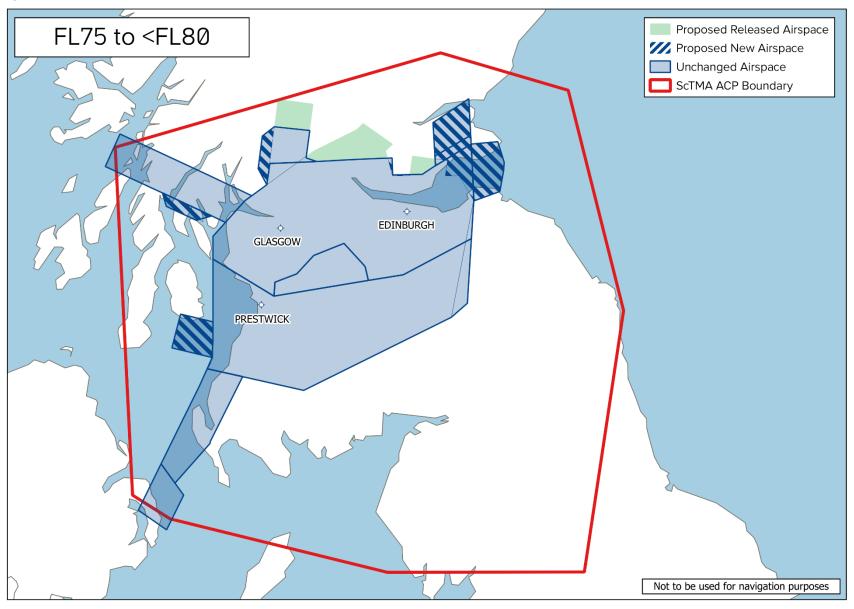


Figure 19: New and Released CAS FL80 to <FL85

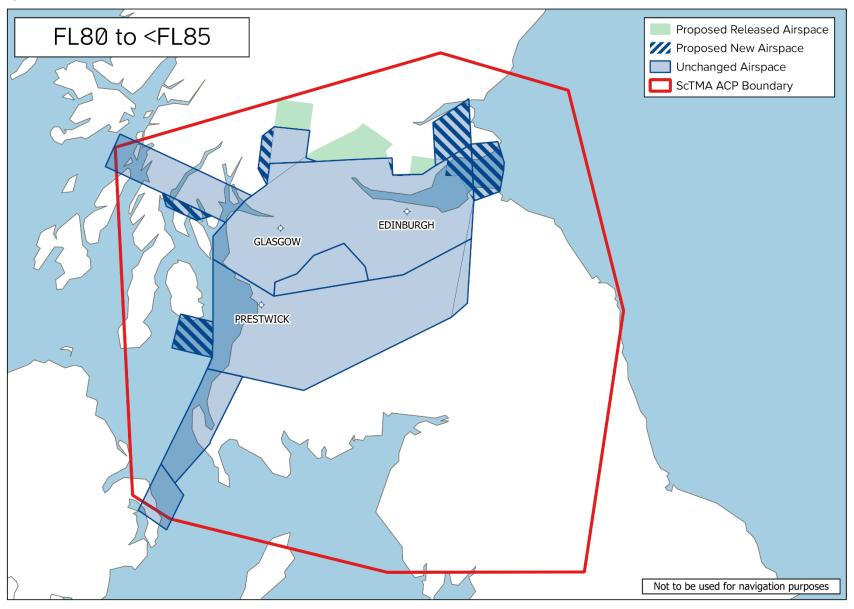


Figure 20: New and Released CAS FL85 to <FL95

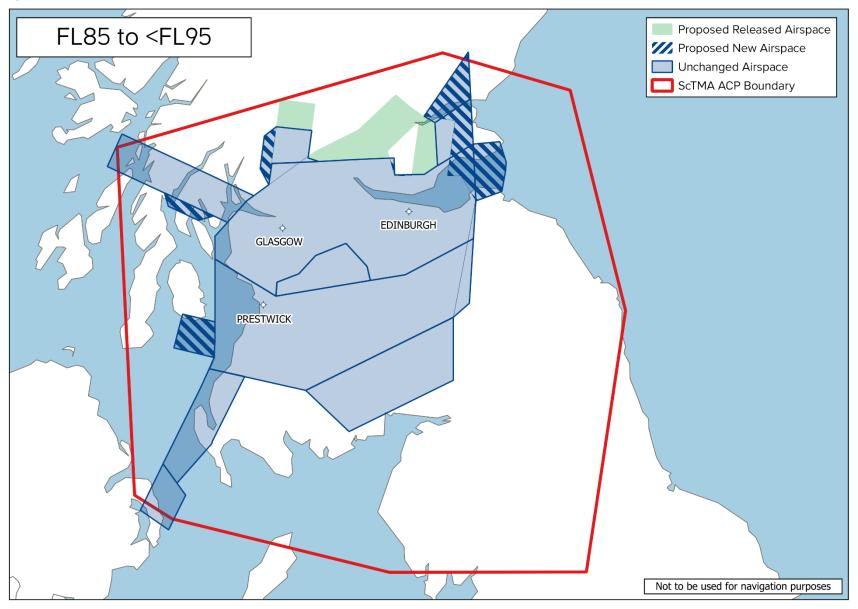


Figure 21: New and Released CAS FL95 to <FL105

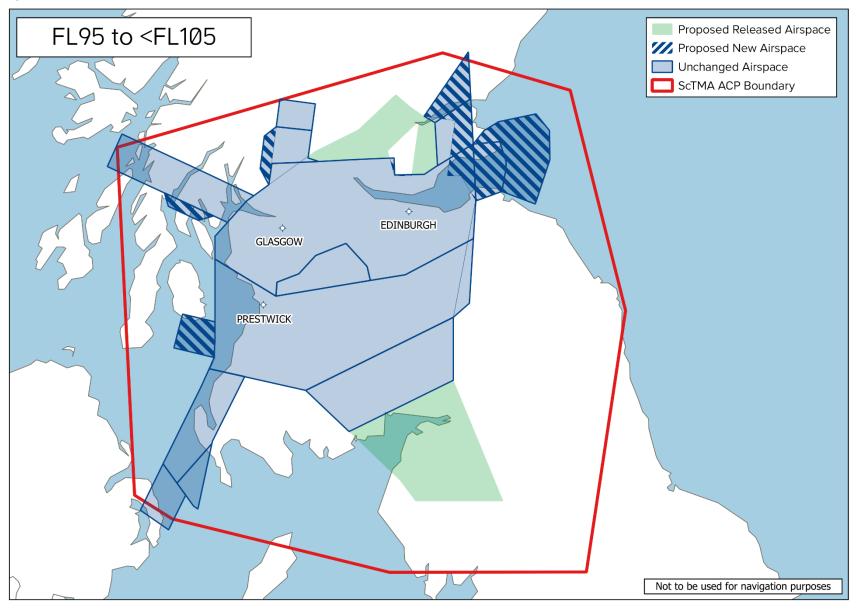


Figure 22: New and Released CAS FL105 to <FL110

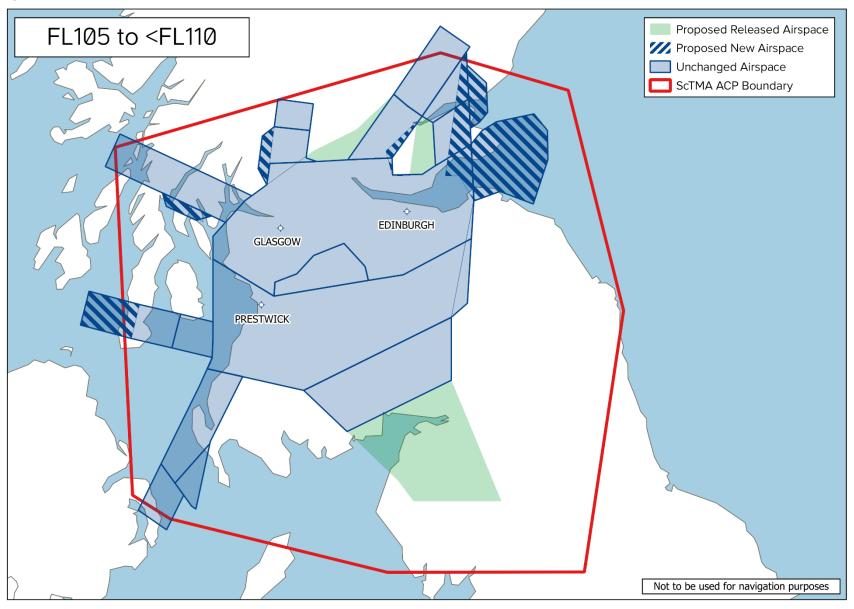


Figure 23: New and Released CAS FL110 to <FL115

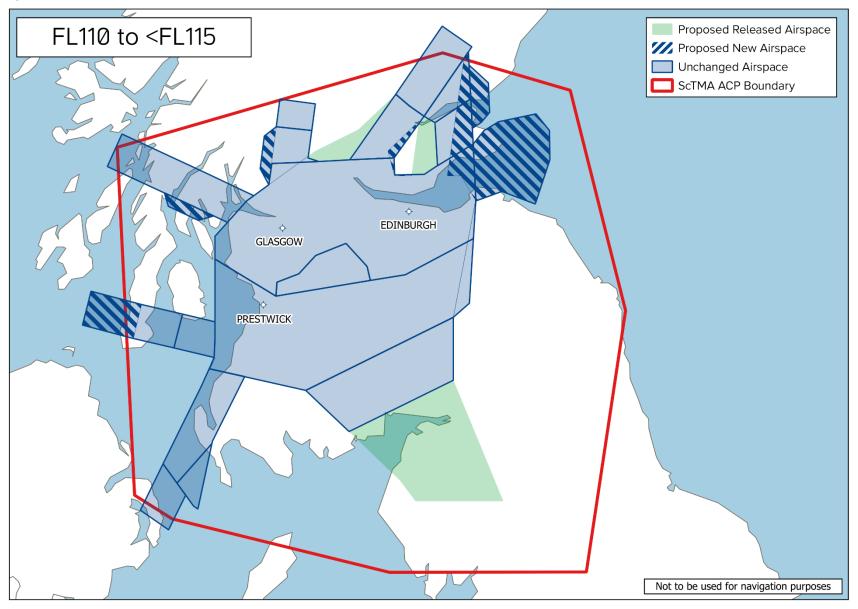


Figure 24: New and Released CAS FL115 to <FL125

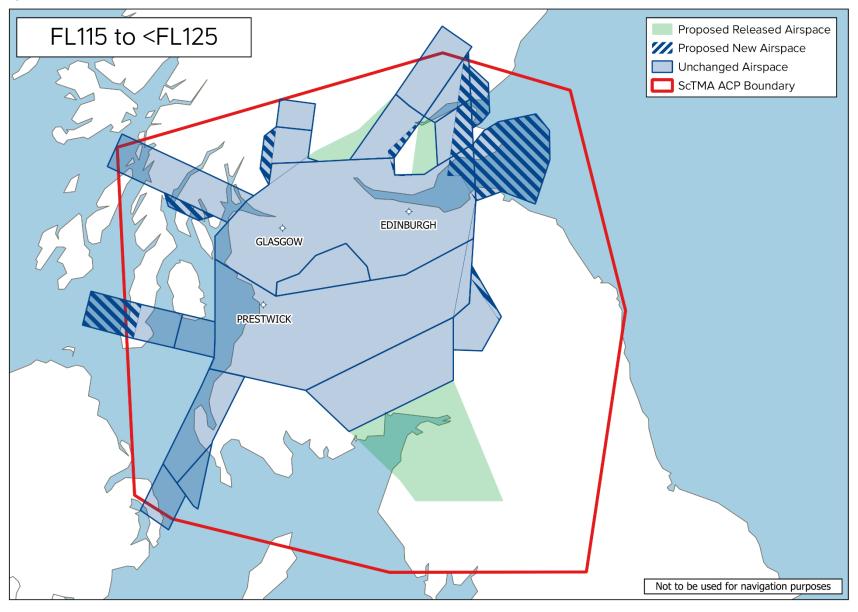


Figure 25: New and Released CAS FL125 to <FL145

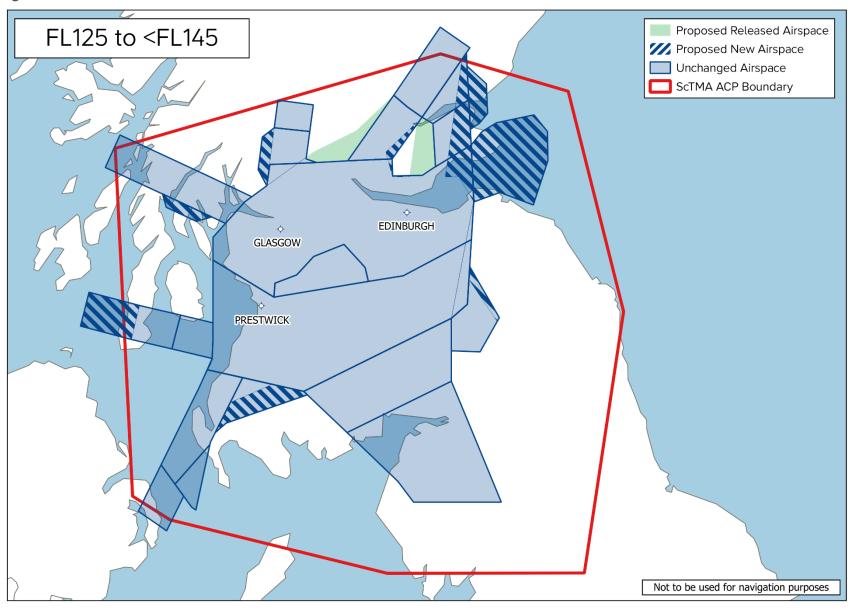


Figure 26: New and Released CAS FL145 to <FL150

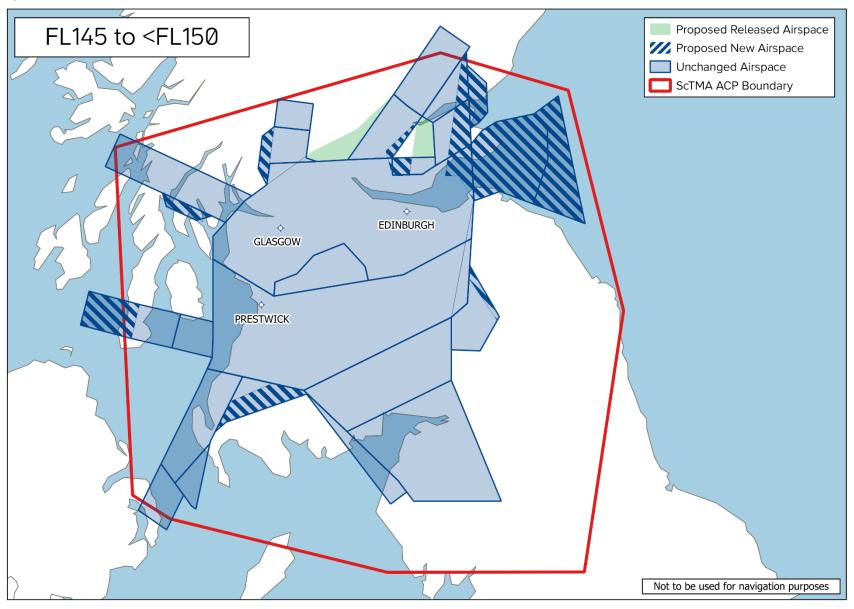
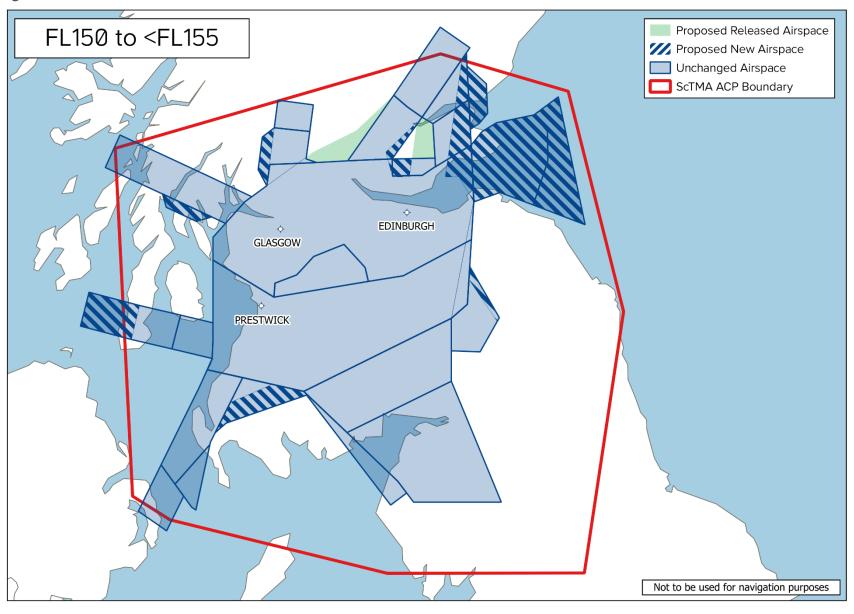



Figure 27: New and Released CAS FL150 to <FL155

Economic Impact from Increased Effective Capacity for Cluster-Wide "With Airspace Change" Proposal – General Aviation/Commercial Airlines

107. The delay benefit figures from Table 66 have been monetised by the sponsors, this monetisation is captured in the Cost Benefit Section 8.

Fuel Burn for Cluster-Wide "With Airspace Change" Proposal – General Aviation/Commercial Airlines

Fuel burn is directly proportional to CO₂e and so is calculated by the same method/assumptions as described in Annex A. The fuel burn comparison is shown below. This has been monetised for the cost benefit analysis in Section 8¹³.

Table 70: Fuel Burn for Cluster-Wide "With Airspace Change" Proposal vs "Without Airspace Change" Baseline 2027-2036 & Total

	With	out Airspace Ch	ange	Wit	th Airspace Cha	nge	Difference						
Year	Annual Fuel Burn (Kt)	Annual Fuel Burn Cost (£) 2024 prices	Average Fuel Burn per Flight (kg)	Annual Fuel Burn (Kt)	Annual Fuel Burn Cost (£) 2024 prices	Average Fuel Burn per Flight (kg)	Annual Fuel Burn (Kt)	Annual Fuel Burn Cost (£) 2024 prices	Average Fuel Burn per Flight (kg)				
2027	493.4	£ 338,489,871	1,908.2	487.5	£ 334,425,382	1,885.2	- 5.9	-£ 4,064,489	- 22.9				
2028	500.4	£ 343,265,898	1,911.0	494.3	£ 339,051,136	1,887.6	- 6.1	-£ 4,214,762	- 23.5				
2029	507.4	£ 348,041,924	1,913.8	501.0	£ 343,676,889	1,889.8	- 6.4	-£ 4,365,035	- 24.0				
2030	514.3	£ 352,817,951	1,916.6	507.7	£ 348,302,642	1,892.0	- 6.6	-£ 4,515,309	- 24.5				
2031	521.3	£ 357,593,977	1,919.2	514.5	£ 352,928,395	1,894.2	- 6.8	-£ 4,665,582	- 25.0				
2032	528.2	£362,370,004	1,921.9	521.2	£ 357,554,149	1,896.3	- 7.0	-£ 4,815,855	- 25.5				
2033	535.2	£ 367,146,030	1,924.4	528.0	£ 362,179,902	1,898.4	- 7.2	-£ 4,966,129	- 26.0				
2034	542.2	£ 371,922,057	1,926.9	534.7	£ 366,805,655	1,900.4	- 7.5	-£ 5,116,402	- 26.5				
2035	549.1	£ 376,698,083	1,929.3	541.5	£ 371,431,408	1,902.3	- 7.7	-£ 5,266,675	- 27.0				
2036	556.1	£ 381,474,110	1,931.7	548.2	£ 376,057,162	1,904.3	- 7.9	-£ 5,416,948	- 27.4				

ScTMA CAF2, Issue 2.0 82

_

¹³ Please refer to the greenhouse gas emissions methodology section provided in Annex B for contextual information on how the use of planned flight data in the NERL modelling may affect this result

Training Costs for Cluster-Wide "With Airspace Change" Proposal – Commercial Airlines

109. Flight procedures worldwide are updated with each aeronautical information regulation and control (AIRAC) cycle and airlines update their procedures accordingly, training as required. None of the Cluster-Wide options are not anticipated to require additional training costs for airlines.

Other Costs for Cluster-Wide "With Airspace Change" Proposal – Commercial Airlines

110. There are no additional associated costs for airlines anticipated with any of the Cluster-Wide options.

Infrastructure Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP

- 111. None of the Cluster-Wide options are expected to change Airport or ANSP infrastructure, beyond the initial deployment phase which will require some systems engineering amendments.
- 112. Edinburgh have identified a future saving as a the implementation of Performance Based Navigation (PBN) procedures removes their dependencies on the Non-Directional Beacon (NDB) which are currently the contingency for the Instrument landing System (ILS). This will remove a cost of c.£300k (2024 prices) in c.2030. This is captured in the Cost Benefit Tables in Section 8.

Operational Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP

Glasgow and Edinburgh Airport have quantified some minor increases to operating costs relevant to their consultation option. NERL have not quantified any costs in this category. The airport operating costs changes are captured in the Cost Benefit Tables in Section 8.

Deployment Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP

114. There are costs associated with training operational staff prior to an airspace change. These costs are described qualitatively in each ACP where relevant.

Other Costs for Cluster-Wide "With Airspace Change" Proposal – Airport / ANSP

115. None of the Cluster-Wide options are expected to change other costs at the Airport or ANSP.

8 Cost Benefits Analysis

The table below shows the overall monetised benefits for the 10 year analysis period for the cluster-wide "with airspace change" Proposal compared to the equivalent 'without airspace change' baseline. The overall monetised benefit for the period has been calculated as c. £130m comprising of benefits from a relative reduction in noise impact, CO2e and fuel costs for airlines. There are also some relatively minor costs and benefits to airport infrastructure and operation.

Notes for Cost Benefit Analysis:

- 117. The NPV tables on the following pages contain an analysis of all relevant monetised cost and monetised benefits associated with each option. NPVs are based on the following assumptions:
 - All 'nominal' costs and benefits have been adjusted into 2024 'real' costs and benefits (using published Web TAG Databook GDP deflators) and converted into GBP when necessary, using spot rates as at 22nd March 2024.
 - All 'real' figures have been discounted using the Social Time Preference Rate (STPR) set by the UK Government and contained in the WebTAG Databooks. The standard STPR of 3.5% has been used for all costs and benefits discounting, apart from 'Noise' costs and benefits, which have been discounted using the Health STPR figure of 1.5%.
 - 2024 is used as the base year for NPV discounting.
 - Noise and CO₂e costs and benefits are calculated directly using WebTAG workbooks. Please refer to the methodology section
 for greenhouse gas emissions for contextual information on how the use of planned flight data in the NERL modelling may
 affect the CO₂e costs result.
 - Delay covers both airborne delay calculated by NERL and ground delay calculated by Glasgow Airport. As these are different measures, they have had different methods and assumptions for their calculation. Edinburgh Airport did not present a quantified delay benefit. See the individual ACPs for details.
 - For fuel burn, the jet fuel price used in the NPV calculations is based on the Average Cost per Tonne of USD \$861.39 (sourced from: IATA Fuel Monitor for week ending 22nd March 2024). To convert into GBP, the USD to GBP spot exchange rate from March 24, 2024 of £0.796373298, which converts the price to GBP £685.99. Fuel prices and exchange rates are volatile, and will have changed since the analysis was undertaken. However, it is important to note that there is a forecast fuel reduction per flight for all options and so there would always be an NPV benefit, regardless of the price and conversion rates applied.

This Full Options Appraisal was undertaken on the most up to date sources of data at the time, and as part of CAF3 (undertaken on the Final Options Appraisals in CAP1616 Stage 4), the fuel prices and exchange rates will be updated.

• It is not possible to assess CO₂e and fuel for changes below 7,000ft in isolation from those above 7,000ft. This means that airports have provided CO₂e and fuel assessments from their flights including segments above 7,000ft, and NERL have provided a fuel and CO₂e assessments for the whole proposal including segments below 7,000ft – this leads to some inevitable double counting in the individual ACP results. The presentation of cluster-wide results below does not require a distinction above and below 7,000ft and therefore the results below are the best estimates for the overall cluster-wide effect. As this is without double counting the CO2e and fuel results presented here for the cluster are less than the sum of the results in the individual ACPs. See Annex A for further detail on the methodology used to estimate the CO₂e and fuel benefits.

Table 71: Cost Benefit Table for Cluster-Wide "With Airspace Change" Proposal

Year		2027		2028		2029		2030		2031		2032		2033		2034		2035		2036	1	0 year total benefit
Net Community Benefit (Noise)	£	3,322,963	£	3,284,957	£	3,247,348	£	3,210,133	£	3,173,309	£	3,136,873	£	3,100,820	£	3,065,148	£	3,029,852	£	2,994,931	£	31,566,333
Net Wider Society Benefit (Untraded CO ₂ e)	£	1,628,801	£	1,881,331	£	2,130,610	£	2,376,535	£	2,619,014	£	2,857,960	£	3,093,292	£	3,324,939	£	3,552,834	£	3,776,917	£	27,242,234
Net Airspace Users Benefit (Traded CO ₂ e)	£	3,082,465	£	2,990,068	£	3,032,375	£	2,967,476	£	2,785,420	£	2,609,613	£	2,440,014	£	2,318,053	£	2,128,915	£	1,976,873	£	26,331,271
Net Airspace Users Benefit (Airborne Fuel Costs)	£	3,665,762	£	3,672,744	£	3,674,923	£	3,673,204	£	3,666,681	£	3,657,160	£	3,643,648	£	3,627,017	£	3,607,146	£	3,584,395	£	36,472,681
Net Airspace Users Benefit (Delay Cost Without Airborne Fuel)	£	755,171	£	766,287	£	775,673	£	783,442	£	789,694	£	794,537	£	798,039	£	800,310	£	801,418	£	801,439	£	7,866,010
Infrastructure Costs	£	-	£	-	£	-	£	244,050	£	-	£	-	£	-	£	-	£	-	£	-	£	244,050
Operational Costs	£	-	£	-	£	-	£	-	-£	15,622	£	-	£	-	£	-	£	-	-£	12,973	-£	28,594
Total Net Present value	£	12,455,163	£	12,595,386	£	12,860,928	£	13,254,840	£	13,018,496	£	13,056,143	£	13,075,814	£	13,135,467	£	13,120,164	£	13,121,582	£	129,693,984

9 List of figures and data tables

List of Figures

Figure 1: 'Without Airspace Change' Standard Instrument Departures, Holds and Standard Arrivals Routes for Edinburgh and Glasgow Airports	13
Figure 2: Current Day Glasgow and Edinburgh Airport Flight Paths Below 7000ft for Easterly and Westerly Operations	14
Figure 3: Cluster-Wide "With Airspace Change" Proposal Standard Instrument Departures (SIDs), Approach Transitions (IAPs), Standard Arrival Roll	utes
(STARs)and Holds for Edinburgh and Glasgow Airports	36
Figure 4: Illustrative example of CAS structures	54
Figure 5: New and Released CAS 500ft-1499ft	59
Figure 6: New and Released CAS 1500ft-1999ft	60
Figure 7: New and Released CAS 2000ft-2499ft	61
Figure 8: New and Released CAS 2500ft-2999ft	62
Figure 9: New and Released CAS 3000ft-3499ft	63
Figure 10: New and Released CAS 3500ft-3999ft	64
Figure 11: New and Released CAS 4000ft-4499ft	65
Figure 12: New and Released CAS 4500ft-4999ft	66
Figure 13: New and Released CAS 5000ft-5499ft	67
Figure 14: New and Released CAS 5500ft-5999ft	68
Figure 15: New and Released CAS 6000ft to <fl65< td=""><td> 69</td></fl65<>	69
Figure 16: New and Released CAS FL65 to <fl70< td=""><td> 70</td></fl70<>	70
Figure 17: New and Released CAS FL70 to <fl75< td=""><td> 71</td></fl75<>	71
Figure 18: New and Released CAS FL75 to <fl80< td=""><td> 72</td></fl80<>	72
Figure 19: New and Released CAS FL80 to <fl85< td=""><td> 73</td></fl85<>	73
Figure 20: New and Released CAS FL85 to <fl95< td=""><td> 74</td></fl95<>	74
Figure 21: New and Released CAS FL95 to <fl105< td=""><td> 75</td></fl105<>	75
Figure 22: New and Released CAS FL105 to <fl110< td=""><td> 76</td></fl110<>	76
Figure 23: New and Released CAS FL110 to <fl115< td=""><td> 77</td></fl115<>	77
Figure 24: New and Released CAS FL115 to <fl125< td=""><td> 78</td></fl125<>	78

Figure 25: New and Released CAS FL125 to <fl145< th=""><th>79</th></fl145<>	79
Figure 26: New and Released CAS FL145 to <fl150< td=""><td>80</td></fl150<>	80
Figure 27: New and Released CAS FL150 to <fl155< td=""><td>8:</td></fl155<>	8:

88

List of Tables

Table 1: Cost benefit Analysis Summary for 2027-2036	5
Table 2: CAF2 Summary Results for 2027-2036	5
Table 3: CAF Stages as Summarised in ScTMA Masterplan Iteration 3	8
Table 4: ACP Consultation Options	10
Table 5: L _{Aeq, 16 Hr} , Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	16
Table 6: L _{Aeq, 16 Hr} , Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	16
Table 7: L _{Aeq, 16 Hr} , Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	17
Table 8: LAeq, 8 Hr, Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day	17
Table 9: L _{Aeq, 8 Hr} , Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027	18
Table 10: L _{Aeq, 8 Hr} , Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036	18
Table 11: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	20
Table 12: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	20
Table 13: N65 Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	20
Table 14: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day	
Table 15: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027	
Table 16: N60 Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036	21
Table 17: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	23
Table 18: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	
Table 19: Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	23
Table 20: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day	
Table 21: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027	24
Table 22: Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036	24
Table 23: CO₂e "Without Airspace Change" Baseline, Current Day (2023) and 2027-2036	25
Table 24: Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	26
Table 25: Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	27
Table 26: Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	27
Table 27: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	28
Table 28: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	28
Table 29: Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	28

Table 30: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, Current Day	. 29
Table 31: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2027	. 30
Table 32: Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "Without Airspace Change" Baseline, 2036	. 30
Table 33: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, Current Day	. 31
Table 34: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2027	. 31
Table 35: Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "Without Airspace Change" Baseline, 2036	. 31
Table 36: Pre-departure Ground Dealy and Network Delay for "Without Airspace Change" Baseline, 2027 & 2036	. 32
Table 37: Fuel Burn for "Without Airspace Change" Baseline, Current Day (2023) and 2027-2036 & Total	. 33
Table 38: Cluster-Wide "With Airspace Change" Proposal TAG Noise Assessment Results	. 37
Table 39: Comparison Table for L _{Aeq, 16 Hr} , ,Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 38
Table 40: Comparison Table for L _{Aeq, 16 Hr} , ,Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	
Table 41: Comparison Table for L _{Aeq, 8 Hr} , ,Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 39
Table 42: Comparison Table for LAeq, 8 Hr, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 39
Table 43: L _{Aeq, 16 Hr} , ,Daytime Cluster-Wide "With Airspace Change" Proposal, 2027	
Table 44: L _{Aeq, 16 Hr} , ,Daytime Cluster-Wide "With Airspace Change" Proposal, 2036	. 40
Table 45: L _{Aeq, 8 Hr} , ,Night-Time Cluster-Wide "With Airspace Change" Proposal, 2027	. 41
Table 46: LAeq, 8 Hr, , Night-Time Cluster-Wide "With Airspace Change" Proposal 2036	. 41
Table 47: Comparison Table for N65, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 42
Table 48: Comparison Table for N65 ,Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 42
Table 49: Comparison Table for N60 ,Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 43
Table 50: Comparison Table for N60, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 43
Table 51: Comparison Table for Overflight, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 44
Table 52: Comparison Table for Overflight, Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 44
Table 53: Comparison Table for Overflight, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 45
Table 54: Comparison Table for Overflight, Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 45
Table 55: Comparison Table for CO₂e, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027-2036 & Total	. 46
Table 56: Comparison Table for Tranquillity Sites in Relation to L _{Aeq, 16 Hr} , Daytime, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 48
Table 57: Comparison Table for Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 48
Table 58: Table for Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime, Cluster-Wide "With Airspace Change" Proposal, 2027	. 49
Table 59: Table for Tranquillity Sites in Relation to LAeq, 16 Hr, Daytime, Cluster-Wide "With Airspace Change" Proposal, 2036	. 49
Table 60: Comparison Table for Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	. 50

Table 61: Comparison Table for Tranquillity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	. 50
Table 62: Comparison Table for Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027	7. 51
Table 63: Comparison Table for Biodiversity Sites in Relation to Overflight Daytime Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2036	5. 51
Table 64: Comparison Table for Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 20	J27
	52
Table 65: Comparison Table for Biodiversity Sites in Relation to Overflight Night-Time Cluster-Wide "With Airspace Change" Proposal vs Baseline, 20	J36
	52
Table 66: Comparison Table for Delay, Cluster-Wide "With Airspace Change" Proposal vs Baseline, 2027-2036 & Total	53
Table 67: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPS	(All
Levels)	55
Table 68: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPS	5
7000ft and below only	56
Table 69: Volume of each type and classification of CAS in the baseline and proposed, combined Glasgow Airport, Edinburgh Airport and NERL ACPS	;
above 7000ft	57
Table 70: Fuel Burn for Cluster-Wide "With Airspace Change" Proposal vs "Without Airspace Change" Baseline 2027-2036 & Total	82
Table 71: Cost Benefit Table for Cluster-Wide "With Airspace Change" Proposal	86